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ABSTRACT

The mechanisms of reversible and irreversible deformations are considered using amodel of mechanics based on the concepts
of space, time and energy. Local energy, asageneralized scalar function, isrepresented asalinear combination of independent
invariants of the equations of motion in the form of Lagrange with the addition of terms that characterize the processes of
dissipation and hardening. The use of material density asa General factor of physical propertiesinvolved in the mathematical
formulation of the concept of “energy”, which determines the scale of the energy scale for all types of energy manifested in the
movement of solids, isjustified. Argumentsare given in favor of switching to anew scale of average stresses, including onthe
basis of comparing changesin potential and elastic energy during deformation under the influence of its own weight. A variant
of experimental determination characteristics of the elastic propertiesis proposed. The possibilities of spontaneous processes
of energy transfer from one form to another within one invariant for elastic deformation and with simultaneous change of
several invariants for irreversible deformation are noted. An interpretation of the coefficients associated with the physical
properties of the material in the field of irreversible deformations is proposed using the unified curve hypothesis and the
theory of plastic flow. The determining role of density, heat capacity and coefficient of linear expansion of the material in the
processes of deformation and the energy state of particlesis proved. © 2020 Knowledge Empowerment Foundation
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INTRODUCTION

The concept of “physical properties” is ambiguously interpreted in different sources. The referencel” refers
to physical propertiesof amateria that do not depend on the structure and can change without applying externa
loads, such asdensity, specific electrical conductivity, coefficient of thermal expansion, magnetic permesability,
and lattice parameter. It is separately stipul ated that mechanical properties cannot be attributed to physical
properties.

According to the mining encyclopedid?, physical propertiesinclude characteristic qualities dueto the
composition and structure of asubstancethat are constant under certain externa conditionsand change naturaly
with changesin thelatter, such asdensity, hardness, plasticity, etc. Inthislist, “plasticity” is questionable, since,


mailto:alyushin7@gmail.com
https://dx.doi.org/10.47204/EMSR.1.1.2020.039-056
http://www.kemfo.org

40 Physical properties of materials that determine reversible EMSR, 1(1) 2020

Original Research Article

unlike density and hardness, platicity does not have aquantitative assessment and generally accepted methods
of determination.

Metal scientists¥ believethat physical properties characterizethe state of themateria, aswell asitsability to
respond to external factorsthat do not affect the chemical composition of the material. Physical properties
include, inadditionto magneticand thermd, flexibility, shrinkage and € ongation without specifying theconditions
for their determination.

Thefreeencyclopedid® referstothemdl the propertiesinherent in asubstance outside of chemical interaction,
including not only optical, therma and dectrica, but d so mechanica.

Anayzing different sources, we can notethe uncertainty in relation to the Poisson’s ratio, which characterizes
theratio of transverseand longitudinal deformationsin linear tension. Inworks®8, it isreferred to the physical
properties of themateria alongwiththeyoung’s modulus, and in textbooks on the resistance of materials”® —to
themechanical characteristics, whichincludethelimitsof yield and strength. The peculiarity of thelatter isthat
they can changewithin 15% or more depending on thefeatures of meta production, storage conditions, testing,
€etc.

For the sakeof certainty inthispaper, wewill understand thephysica propertiesasscdar sablecharacterigtics
of materids, which alow usto cd culatedirectly unobservabl eenergy parametersof the statethrough the measured
kinematic characteristicsof motion.

Thepurposeof thiswork isto substantiate the physical propertiesthat determinetheenergy characteristicsof
particles during the deformation of bodiesusingamodel of mechani csbased on the conceptsof space, timeand
energy!.

BASIC CONCEPTSOF MECHANICSBASED ONTHE CONCEPTSOF
SPACE, TIMEAND ENERGY

Theenergy model of mechanicg®? isbased on the statement that the equationsof motion
% =% (op,t) @
wherex e (x, y, z) , @, € (o, B, v) —Euler and Lagrange variables, respectively,t —time, carry all information about
externd influencesand changesoccurringin eech particeof the observed mechanica sysem. Energy asagenerdized
scdar characteristic of any typesof motion* must takeinto account al independent invariant characteristics of
thesystem (1).

Thechoice of thereference systemissubjective, sotheinvariants can only be defined intermsof derivatives
of Euler variablesin time and directions. Given thedifferent nature of coordinates o, € (o, B, y) andtimet, two
independent operatorsare used to denoteinfinitesma incrementsof any function f (a., B, y, t) , asin®%: theoperator
d for increments in timedf(a,B,y,t)=fdt, and the operator 65— for increments in space

8f (o, B, v, 1) = f 8o+ 338+ f,8y, whereda, 5B, 8y — are infinitesimal increments of Lagrange variables.
Themaininformation about the state of particlesis provided by the Jacobian components

X % XYJ
%[0y =%y =|Ya Y5 Yy
L S

Inthemost Generd case, theinvariantsof system (1) are 3 modul es of the vectorsdisplacement u, velocity
v, accelerationw, and path s:

& =|u] = \JuZ +UZ + 02 =(x= )+ (y-B)? + (z-7)°

)
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t
to=lo]=yo + 02402 =R+ Y2+ 7 gy =|W =W G+ wE =X+ yE + 2 gfsztf'“'dt )
threeinvariantsof thetensor &% /do., =%, that determine the deformation of the particle:

Es =X, + Y3 +2, Ee =X +X5 + X+ Yo +yf+ Y2 +zh+zf+ 2] & =%, FR=08V/8V, (9

threeinvariantsof thestrain ratetensor X, /0oty =Xy, :

©)

2 2 2 2 2 2 2 2 2 —
§8:X[(1+ytl3+zt“/ §9:)(m+)(tﬁ+xty+ym+ytﬁ +yt'Y+Zt(X+Ztﬁ +ZIV &10“Xi,tcxp

and threetimeintegra sof thethreeinvariants (4) of thestrain ratetensor:

&11 = I Ejsdt € = I E»gzdt &3 = I@i/osdt- (6)
Theenergy carriersarepartices, indudinginfinitesmal oneswith volumesy, = 5a.5p8y. Inthesmplest verson,
thegeneraized scalar functionsE = SE(&;) canbewritten asthesum of 13 terms, each of whichisrepresented by

the product of the corresponding invariant on thevolumesv,, andascaar multiplier k, that ensuresequdity of the
dimensionsof theterms:

13 13
OF = §6Ei &)= éki §idly @)

Equation (7) assumesthe existence of 13 types of energy that characterizein General the movement of
absolutely solid or deformabl e bodi es, taking into account various factorsmanifested in changesin the position,
volumeand shapeof particles.

Sincethestarting point of varioustypes of energy can be chosen arbitrarily, itisadvisableto usethelaw of
conservation of energy asanincrement

13
doE =8\p(d3 k) =0 ®

Systemsthat include interacting bodies that are not affected by bodiesfrom other systems that are not
included intheconsidered system are called isolated (closed). In other words, in anisolated system, the cause of
motion may bemateria objectswithinthe system. Only for isol ated systems can the energy conservationlaw be
used intheform (8).

Any part of anisolated system can be considered a separate (closed) subsystem if the action of externa
causesinrdaiontoit isreplaced by mathematica imagesequivaent intheir influence on the equations of motion,
called external forces. Anisolated system differsfrom adedi cated one by the absence of externa forces.

The particlesins de anybody cannot represent anisolated system, so thelaw of conservation of energy for a
particle must be supplemented with afunction that takesinto account theinteractions at itsboundaries. Denoting

the energy equivaent of external influencesby dsE, , instead of (8) for the particle should bewritten

dSE:SVO(d_IZng )—doE, =0 9

Equation (9) isequivaent to thefirst beginning of thermodynami csfor acontinuousmedium partid€®, according
towhichthework of externd forcesis spent on changing thekinetic, potentid, e astic or other typesof energy of
the particle. All known formsof thelaws of motion™? should be considered as special casesof equation (9).

Thescalar coefficientsk included in equations (7) — (9) must characterize the physical properties of the
material or mediuminwhichthemovement occurs. Sincethey, together withtheinvariantsé, areincludedinthe
law of conservation of energy (8), only 12 can beindependent.
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Thepeculiarity of assumption (7) withalinear combination of invariantsisreduced to themandatory gppearance
of acommon coefficient multiplierk (i=1, 2..., 13), which can be considered asabasi c energy property, since
it determinesthescaeof theenergy scaleinal itsmanifestations.

In contrast to class cal mechanics, intheenergy modd thereisno fundamentd difference between absolutely
solid and deformable bodies. In the absence of deformation, part of thetermsin equation (9) turnsto O dueto
congtant invariants. To determinethebasic energy property, it issufficient to consider thefreefal of asolid body
inthegravitational field of the Earth with achangein two typesof energy®®?. If you do not takeinto account the
air resistance, the system can be considered i sol ated, the movement occurs under the law of conservation of
energy intheform (8).

By orienting the z-axisto the center of the Earth, wewriteequations (1) as
X=a, Y=, Z=y+U,(y,1)

Theincrementsof potential d3E, and kinetic d3E, energy will be
dSE, = —k,8V,zdt <0

dSE, = k,8V,d(v2) = 2k,8V,z, zdt > 0

Law of conservation of energy (8)

dSE, + dOE, = —kyz,dVydt + 2k,z, 2, SVt =0 (10)

for the considered vers on of themotion determinestherelationship between the coefficients k, = 2k,z,. Usngthe

generally accepted notation for acceleration of freefdl z, = g, weget k, = 2k,g.Inequation (10), the coefficients
k, and k, characterize the properties of the particle and should be assumed

kK =po9 ko =po/2, (1)
then for abody with volume V, and massmwe get the generally accepted expressionsfor kinetic and potential
energy
E, =mv?/2, AE, =mgAz

Thus, the basic energy property for potentia (inthegravitationd field of the Earth) and kinetic energy isthe
density of themateria PO. Thereisreasonto believethat it should beincluded asamultiplier indl other typesof

energy through the coefficientsk (i =3, 4, ..., 13). Thisconfirmsthe use of body massin estimating the energy
cost of friction (k,) inthe movement of absol utely solid bodiesin classical mechanics

d6E4 - k48V0d§4 == pogferVodS (12)

where k, = podfy , f —isthecoefficient of friction.

Thebasemultiplier of thephysica propertiesshoul d be takeninto account when choosing experimenta and
other methodsfor determining physica propertiesthat lead to equation (9)

Theexperience of solving various problemswith absol utely solid and deformable bodies'?, including with
vibrationsg®34, alowsusto reduce the number of invariantsthat affect the energy state of particlesand moving
bodiesin Generd onthebasisof sufficiently strong arguments.

First of all, thisconcernsaccelerations. It isusually noted™ that the equations of motion (1) are doubly
differentiablefunctions. Thisdoesnot excludethemention of theinvariant £, inthe concept of energy (7). However,
accelerations are discontinuousfunctions by their nature, thetime derivative of accel erations has no physical
meaning, and therefore they should be excluded from equations (8) and (9).

Indeed, inthegravitationd field of the Earth, abody resting at acertain height does not haveaccel eration, but
if it beginstofall, theacceleration immediately acquiresthevalueg = 9.81 m/s% Inthis case, the energy of the
body does not change, thismoment corresponds to the appearance of speed and, accordingly, the beginning of
changesin potential and kinetic energy. It ispossibleto determine accel erationsfrom equation (9), sincethey
participateinthe conservationlaw astimederivatives of thevelocitiesincluded intheinvariant &,
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Thelinear invariant &, which determinesthe averagerel ativelength of the projections of thethree basefaces
of aninfinites ma pardleepiped on the coordinateaxesthat coincidewiththeminthedirectionintheinitid state,
should aso beexcluded from further consideration. The sum of dementsof themain diagond of the Jacobian (2)
isindeed invariant with respect to therotation of the coordinate axes®¥, but it changeswhen the particleisrotated
asarigidwhole.

In particular, when the body rotatesrel ativeto the zaxiswith the equations of motion

X=a.coqot) —Bsn(wt) y=asn(ot) + oo ot) zZ=y
and Jacobian (2)

cogwt) —sin(wt) 0
X op = gnot) codwt) O

0 0 1
theinvariant &, incontrast to &, and &, dependsontheangle of rotation of the particleasarigid whole,
& = 2cog(wt) +1 Ce =3 & =1

which should not affect the strain energy. Asaconsequence, theinvariants, and &, must also beexcluded from
equations(7) —(9) in the future.

Externa forcescan beof any nature: gravitational, magnetic, or mechanical. Inparticular, for aninfinitesmal
particleinsidethebody, the energy equivaent of external influences g, onthemovementsof itsboundariescan
be determined by the scalar product of theacting forces sp and displacements dr @
dSE, =3 (8P-dr) =3 (8P v)dt (13)

Taking into account possible changesinforcesand vel ocities on oppositefaces, assuming al functionsare
differentiableand setin Lagrange variables, we obtain®'% from equation (13) for therateof changeinthe specific
energy of external influencesw ., taking into account therule of summation by arepeating index

o, =d3E, /(8Vodt) = 1%, 1 +X;,07,; [O0t, (14)

prita p
TheLagrangestressest_ form an unsymmetric tensor of the second rank. Representing theincrement of the

energy of externa influencesthrough thevolumedensity of itsrate of change (14), thelaw of energy conservation
(9) takestheform

dOE =8V (ke +koSor +KaSay +KeCer +h7G74 + Kooy +Hkiolaos +k1oGioy + Kigbagr —@e)df =0.  (15)
it can be considered asaform of energy balance.

The properties determined by the coefficientsk_ and k, should determinethe energy changesof the particle
intheareaof dastic deformations. Takinginto account the previously made remarksabout theexclusioninvariant
& andtherelationsgivenin®*9, the coefficientk, isan additive component of theaverage voltage
o = 2KksEs | (BR) +k; (16)
it can only affect the sel ection of the starting point of theaveragevoltage scae.

In®17, there are reasonsto consi der average stresses asameasure of the volume energy density and not to
accept them asequal to Ointheinitial state of the particle. In particul ar, thefeasibility of switchingtoanew
average stress scaleis consistent with theBoyle-Marriott law for ideal gases, which coincideswith thelaw of
elastic volume change ¢ =3Ke, if we consider thevolumeélasticity modulusK astheactua pressurep,inthe
material, and the hydrostatic stressc asan increment of theinternal pressurep

Vo = PM = (P +AP)(Vp +AV) or Ap=c=—PAV /V,=3Ke

Anargument infavor of transferring the beginning of the average stress scal e can be acompari son of changes

inelastic and potentia energy when therod isstretched under its own weight(29,

EXPLORATORY MATERIALS SCIENCE RESEARCH




44 Physical properties of materials that determine reversible EMSR, 1(1) 2020

Original Research Article

Consider two pivotaly connected rods OA and AB of length L, located in theinitial statein the horizontal
planex =0 (thex axisisdirected to the center of the Earth) with the coordinates of the axes of the hinges O(0,
0), A(O, L), B(O, 2L). At some point, the hinge B beginsto moveto the origin. When the points O and B coincide,
therods OA and AB takeavertica position. Thedeformation of rods under the action of their ownweight is
described by thewe l-known!”8 rel ations

Oy = PIX €y =POX/ E
whereEisYoung’s modulus. For the total length L thestrainenergy is

poL
AE =0, 5\£ OOV =0, &rgLE 17)

Thechangeinthepotentia energy of the position dueto gravitational forcesduring thetransition froman
undeformed horizontal stateto adeformed vertical Stateis

AE =0,5mgL (18)
Thedifference between theright partsof equations(17) and (18) determinesthemultiplier (pg/3E), whichfor
sted (p =7.8g/cm®, g=9.8 m/<?, E =200 GPa) hasthe order 107 1/m.

Thereisno discrepancy when comparing theenergy changein thenew scae. To fulfill thecondition of energy
invariance with respect to the choice of thevel ocity reference system®19, the equation must befulfilled

Oty
Xt (a'ﬂ)ogi _pOXi,ttJZO (19)
For anew average stress scalewith asinglemodulusof elasticity
Ty = 2k6)?,p (20)
itisconvertedto theform
Xi,t(z);erzplsﬁ gi_;i)xi,ttjzo (21)

Taking the hypothesis of plane sections, according towhich x; = x, =0, for theequation X = X(c,t) when
Tox = 26X, We get
821 0% = —pyg/ (2kg) = —y or x=—-0,5pa? +Co+C,

Asboundary conditionsfor determining theintegration constants C, and C,, weusethe assumptionthat there
areno displacementsat the upper end (x=0at ¢ =0), and deformationsat thelowerend (x, =1 a o =L,).
Thenfor theequationsof motion (1) under tension from itsown weight we get

X=0[l+y(Ly—oa/ 2] y = Bl1-py (Lo — )] z="1-py (Lo — o]
where p isthe Poisson coefficient, with Jacobian (2)

X X% %) (ty(l-o) 0 0
Xa=| Yo Y ¥ |=| By 1-py(L-o) 0
Z, 3 z Yy 0 1-py(L-a)

and thevolumedensity of elasticenergy by changingtheinvariant £
Sy |8V = ke{ [1+ (Lo —o)]” + 21— py(Lg —a)]” + 20292 (B% +7°)}
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Asnoted above, theratio v =p,g/(2k;) isontheorder of 107 1/m. Ignoring the squaresy?, we get
OEqy 8V = 2ke (Lo —a)(1—2p) = pog (Lo — a)(1—2p)
or, after integrating by volumewithmassm,

1
SIS 5 Mgl (1-2p) (22)
Theresulting ratio cannot be considered accurate. In particular, the equations of motion do not satisfy the

boundary conditions Y; =1 and z, =1 onthesidesurfaces of thedeformable body. However, the changeinthe
potentia energy of the position of deformable rods (modulus)

Lo L
AE,g =poFp | X0u=podFy [ afl+y(Ly—oa/ 2)]50 =0,5mgly(1+ 2yl /3) 23)
0 0

it hasthe sameorder asthe d astic energy change. Both results (22) and (23) coincideintheabsence of transverse
deformations (u=0).

Asanadditiona argument in favor of switchingto anew scale of average stresses (20), we can comparethe
dependence of the Cauchy average stressfrom the energy model of mechanics, givenin®,

BoR=1,% , = 2KEg (24)
with experimenta datafor hydrostatic compression when

o=2%R"?

After switching to the generally accepted scal e by shifting the starting point by 2k weget

o =2ks(RY3-1) = 2k;(1-R 3/ R”3 or R=1/[c/(2k)+1* (25)

Theratio(25) at 2kg = 3K and K=169 GPadiffersfrom that established experimental ly for ironin therange
up to 300 GPa*
R=1+5,286*10"°c +0,8*10 °c*
with an error of no morethan 0.016%.
For linear stretching with equationsof motion
X= 0L(:H' 8xx) yzﬁ(l_”‘s»() Z= Y(l_ “‘gxx) (26)
from equality (24) for thegeneraly accepted scale (after shifting theaverage stressscale by thevalue 2k ), we get
Oy = e (1-21) Or o, =E¢,, if weaccept 2kg = 3K and takeinto account the dependence between the

eladticitymodules E =3K(1-2u) .
Taking into account the above arguments, k, = 0 isaccepted i n the following statement. Asfollowsfrom
equation (16), thenew scale providesfor an mean stress o, =2 intheinitia state (&, = 3, R=1). Themultiplier

k, should beexcluded from further analysisas not related to the physical propertiesthat determinethe energy
stateof the particles. But thisconclusion cannot be considered asufficient reason for excluding coefficientsk
k withinvariants&, and & .. Instead of equation (15) for the energy bal ance, we get

dBE =8Vo(kaEyy + koot +haayr +heSer +hoSor +Ha0C10 + by + kasbrar — @e)dt =0 (27)
Thenumber of physica propertiesrequired to describethe energy state of particles hasbeen reduced from 13
to 8.

Fromthe considered examples, it followsthat the coefficient k. hastheorder of thevolumeel agticity modulus,
but, unfortunately, they do not giveitsexact vaueand do not alow usto distinguish thebasefactor (density p ) init.
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POSSIBLE METHODSFOR EXPERIMENTAL DETERMINATION OF THE k, MODULE

Methodsfor experimental determination of physical propertiesincluded in equation (27) should meet the
conditionsof uniform deformation and high accuracy of determining energy costs. It istheinhomogeneity of the
deformed statethat did not allow usto find therel aionship between k, and thetensile density onitsown weight.

Itispreferableto consder themethod of deformationinwhich thelinear and cubicinvariantsof thetensor (2)
preservetheinitial valuesk.=3 and k=1, then the energy of the particles changes only dueto the quadratic
invariant &,

Thisoption can beimplemented by compressing aspring™® with theradii of thewirer, and the Central layer
of turnsR intheglobal coordinate system of theobserver X (X, Y, 2) , whosezaxiscoincideswith theaxisof the
spring. Mutually orthogonal axes x and yarelocated in ahorizontal plane, orthogonal tothezaxis, thex axis
passesthrough the center of the section of thelower turnwith coordinates (R, 0,0).

Theinitia coordinates of any particle can be expressed through the helix angle y, from the x-axisto the
considered cross section, theradius of the particler  in this cross section and the angle ¢ characterizing the
position of theparticlerel aivetoahorizonta plane
Xo=0a=(R+lh0085p) 08y, Yo =P =(R+1y0085)siny, Zo=v=hwo/(20)+1p,9NE, (29)
whereh, isthestep of thehdlix intheinitia state. Independent argumentsin the system (28) can vary within
0<ry <1, 0<yp <2nN and 0<{, <2, Nisthenumber of turns. Theradiusof the Central layer of theturnsR,

isthesamefor all particlesand can only changeasthe spring R (h) is compressed.

In an arbitrary loaded state, the position of any particle can be written in the same way, but taking into
account the current val ues of theangle vy, theradiusof theparticleinthecrosssectionr, theangle and radius of
the Central fibersof thespringturns R,

X=(Ry +r cosf) cosy y=(R; +rcosf)sny z=hy/(2n)+rang (29)
wherehisthestep of the spring turnsinthe current state. It ispossibleto change 0<r <r,; if thewire diameter
changesduring thedeformation process, but for other argumentstherangeisassumed to beunchanged 0<wy<2niN,
0<¢{<2r.

Todeterminethederivativesincluded inthe Jacobian of type(2), weusethe Generd rulesfor differentiating
implicit functions, considering the parametersof theauxiliary system asfunctionsof Lagrangian coordinates, for

example, for thefunction x(a., 3, 7,t)

(o Bry,t) ={Ry(t) +r(au, B, v, t) co (e B, v, )]} cod (e B, v, 1)]

then

ox/ oo = x, =r, cosgcosy —r¢, sngcosy —y,, (R, +rcosC)sny (30)
wherethelower indicesof theparametersr, v, C correspond to the partia derivativesof the specified Lagrange

vaiables.
Thederivativesincluded in theright part can befound by considering the spatial incrementsof Lagrange

variablesinthe system (28) by changing the parameters of the auxiliary system dr,, dy and 8¢,
8oL = 008\ 00SCoBiy — SNy (R + 1 005C4)yrg — o C0SYp SINCSC,
83 = Sinyg C0SCdRG +00Syg (R +Tp 00584)Byp —Tp SNy SNCSG,

Sy =8NCodly +hy / (2m)Byy +1 008L35,
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By solving thissystem of linear equationswith respect to increments dr,, , Sy, and &C,, weobtaininverse

dependenciesof theauxiliary system’s increments on the Lagrange variables ‘ increments. They determine the
derivativesrequired for equationsof type(30) that coincidewiththemultipliersat incrementsof the corresponding
Lagrangevariables

S = (CoB\p 008L, +11p SN SN0+ (SN 008, — 11 008\ SNC)3P+SINCDy
S = (CoB\, 008C, +1 SNy SN0+ (SN, 008L, —11 008 SNC0)3P+INCdy
By =—(SnyeRo— By 17,
. . S .. B Sy
5Co:(—mlfosn%"‘nosn\l’oa)sgo)r——(sn\lfosn%+noml’o(x’5§o)r—+m3§0r_

0 0 0

where y, =R +1, 0085, y =hy/ (21y) . Using thecommon notation for partial derivatives, weget

ry  Gou=(cos\p 00SLy +1p SNy, SING) o/ OB =Ny c0sEy —g COSY, SN
Oy /0P =cosyq /xg 0Co [ dou=(—008yo SNCy +1y SNy, 0085,) /Ty
0Co / 0P =—(sinyy SNy +1p COSY( COSCy) / Ty 0Cq 1 0y =c0sCqy /1y

For derivativesthat areincluded in equations of type (30), it is necessary to take into account possible
changesinthe parametersr, v, { when thespring isdeformed, using the dependencies

R =Ri(hR) r=r(hro) v=y(h o) £=¢(h&o)
Thenthederivetives, incomparison with thosegivenin equation (30), will haveanew multiplier of thetyped / &,
for example, for theonesused in the definition below ox/ do = X,

,h . .
ar(ro,h)/aazar/aro*aro/aoc:%(coswocoscoJrnosnwosngo)
0

0C 100 =0C10Cy*0Cy I Oa. = acéio'h)ri(—coswosingo+nosin\y0 coséy)
o To

v B0t = vy By * g | Bor = vy g Yo

Xo

Thisresultsinthebulkiness of all subsequent equations, for example, instead of (30) after replacement r,
Yo, and ¢,

—sny,

Xo

%, ={0r / arg}(cosy cosCy + Mg SNy, SINEy) cosC cosy —{ Oy / dyp} (Ry +roosC)siny —

601 Co} (oS SINq + Mg SNy, C0SCo)r / T SiInC cosy
If we now assumethat the derivativesin curly brackets and the current coordinates are closeto their initial
vaues

orloryg=1, oyloyy=1, 0C10C, =1, r=r1y, yry,, C=Cy, (31)
then theright side of the previous equationis converted to aconstant

X, = Mo SINEcosEsiny cosy +cos? y(sin? ¢+ cos? ) — 1, Sin¢ cosC siny cosy +sin® y = cos? y+sin y =1
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Inthesameway, ignoring thes ze changein theresults, except for thespring height, weget thefind dependencies
for theelementsof the Jacobian (2), for R =R; =codt

X _q 2)/:1 2=ﬂsin\|; g:—h_hbcosw 22:1
oo 'OP 'O 2my " OP 21y "oy
Compression of helica cylindrical springsisaccompanied by shear deformationswith equationsof motion
h-h, :
X= oL y=B Z:Y+2n(Rs+roos§) (asny—Boosy) (32)

Notethat if wefind the equations of motion based on systems(28), (29) and assumptions(31), instead of
(32) we get the equations of motion of an absolutely rigid body without any deformations

h-hy
27

Equations (32) satisfy the condition of independence of energy from the choice of the vel ocity reference
system (21), which for the considered case (inthe absence of gravitational and inertial forces) leadsto Laplace
equationsfor each of the coordinates 61"

Xua+)%ﬁ+XW:O yococ+yﬁﬁ+yyyzo ZUQ+ZﬁB+ZYY:O

Thevolumeof particlesremainsunchanged R=[x =38V 738V, =1, andthevolumedensity of theacquired
elagtic energy isdetermined by achangeintheinvariant &

o) )
® \2ny )\ 2n(R +1y008C,)

If R >>r,, thedeformation can be considered the same acrosstheentirewire section

h-h ¥ (h-h Y
&’6:(2 rbj :( rbj
474 2nR
Thevolume-integral elasticenergy is(N isthenumber of turns)

(h-hp)* >
B =ke N

Thework of external forces spent on spring deformation can be determined by therel ative compressi on of
the spring, thechangein the potential energy of theloading body, or the height of the rebound of abody witha
known mass previoudy located on the end surface of the compressed spring.

For experimenta studies, ahelicd plate spring with arectangular cross-section (with aheight greater than the
width) ispreferred, for which thecal cul ation of the deformed state does not differ from the above, only thearea
of determining variablesin both coordinate systems used changes. Theaccuracy of theresult isimproved by
reducing the volume with maximum errorscompared to helical cylindrica springswith around cross-section of
theturns.

X=o y=Pp Z=y+y

PHYSICAL PROPERTIESINTHE FIELD OFIRREVERSIBLE DEFORMATIONS

To specify the meaning of the coefficientsin theright part of equation (7), which characterizeirreversible
deformations, consder thetermswithinvariants (5) — (6), which are included in the energy balance (27). In the
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absenceof arigid rotation of particles, theinvariant & practically coincidesin meaning and vauewith thesquare
of theintensity of thestrain rates H*9

E9 = HZ =0, + X4+ + 5, + Vi + Vo + Z + 25 + 24 (33)
To assesstheroleof thisinvariant in the energy balance (27) , we can usethetheory of plasticflow inthe

classical version of deformable solid mechanics, according to which the stressand strain rate deviators are
proportional1%20

Tpi —SPiGO _T_E_
xi’tp—Spiso_H =t (34)
wherez_istheintensity of thetangential stressesdetermined viathequadraticinvariant of thedeviator™, 5 isthe

equivalent of o for thetensorx , 8, =1for Tax, Tgys Tyz @d X Vi %, , for dl other cases, § ;= 0. The

right part (33) coincideswith the square of theintensity of thestrainrateH at s = 0.
Thescalar coefficient of proportionality A with dimension [Pa* s| can be determined experimentally for
processes with uniform deformation by the consumed specific power

o=TyH =AH? (35

(35) at aknown strainrate H. Taking into account therelations (34), the energy component in equation (7) with
theinvariant £, can bewritten as

8By = KgEgdV = kgH %8V, = (kg / )3V, (36)

Theexpressioninbrackets (k,/A) characterizesnot only the material properties, but also the deformation
conditions. Onthisbasis, it can betransferred to the category of mechanica properties.

Itisimportant that theinvariant &, with dimension [1/s°] doesnot characterize adtate, but aprocess. It differs
from O only in caseswhen the surrounding particlesarein motion. If the speed of the surrounding particlesisequa
to O or the same asthe motion of rigid bodiesarederived fromthevelocitiesx ,_ andinvariant £ turnto 0. The
coefficient k; isthedimension [Pa* ], the characteristics of thematerialswith thisdimensioninmodern mechanics
of deformable bodies no. Thesefeaturesgive reason to excludeit from the balance (27), but they can play an
important rolein dynamic processes and for accounting for viscous properties, including inthecase of reversible
deformation.

Difficultiesininterpreting the summand with theinvariant &, lead to alogical replacement of mathematical
images of someinvariants, without distorting their meaning and the bas ¢ concept of energy (7). An additiona
argument for the possibility of such areplacement can bethe previoudy used transition from thevel ocity modulus
(3) toitssquare for kinetic energy. Now the situation is reversed, there are reasons to accept the quadratic
invariant of the deviator instead of (33)

2

8o = H =[(%a — Yip)* + (Mg = 2p)* + (2, = %a)* + X + X5, + 7 + 20, + 20, + 2512 (37)

Theabove considerations, including the possibility of using thetheory of plagtic flow (34) and thecal culation
of thedeformation power (35), remainvalid, but thefinal expression for thecorrespondingloca energy invariant
takestheforminstead of (36)

SEg = koZeBVp = kgHBVG = (kg / 1)T8\g (38)
Thedimension of k; for themodifiedinvariant (37) coincideswith thedimension of theproportiondity coefficient
of thetheory of plastic flow A [Pa* g, which can be determined experimental 1Y,
Thelogicof theproposed trangition from (33) to (37) becomesclearer if weadditiondly replacetheexpression

of invariant & =‘>§,t%‘ giveninblock (4) with aclose-meaning derivativeof theinvariant & =R

&o= Eﬂ,t =R = v/ 8Vo)t 8@0 = k_LOélOSVO = k.u)RSVO (39)
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In this case, the terms with the invariants £, and & | do not characterize States, but aprocess, and it is
possibleto combinethemintheenergy balance (27), asmutually complementary inthetransitionsof theenergy
of shapechange (invariant &) totheenergy of volumechange (invariant & ) mentionedin classical mechanicsof
adeformablesolid.

Thequadraticinvariant &, can berepresented as asum of summands®*!

@6:>§+)§+xf+y§+...zyzze§+e§+eyz:F§:3e2+1“2 (40)
Intheright part, the squares of theratio of the edgelengthsbeforel , and after 5l areused, initially oriented
inthedirection of the corresponding axes

e=A/d).=x+y:+7, pe(a,B,y)

averagevalue of theratio of edgelengths e,

e=(e,+e,+e)/3

and the standard deviation of therel ative edgelengths e fromtheaveragevduee
r?= (e, —e)? + (ep —¢)? + (e, —e)?

Thestructure of theformula(40) alowsthetransition of part of the el astic energy from oneform 3e?to
another /' without changingtheinvariant £ Transitionsarenot restricted by any other conditionsandarereversible.
They areredized inredity at freefluctuationg>*4 without the participation of external energy sources.

Thepossibility of energy transition associated with theinvariants &, and &, hasadifferent nature. The parts
of energy that have passed from onetypeto another arereflected at each moment of timeor after thecompletion
of the processin equationsof type(7) and (8) intermswith other invariants (&, £,,, ). Thepeculiarity of the
processisthat &, isalwayspositive, and &, can haveany sign. If thesum of local energies(38) and (39) isequal
to 0, the process can proceed spontaneously, but only with adecreasein thevolumeof particles (for H>0, R>0,
thesumwill not beequal to 0).

In particular, for linear stretching with equationsof motion (26) at vaues(upto & )
H=~e, 1+ 2u?)v? R ~(1-2we,,

fromthecondition kyH+k,R =0 weget

ko /Ko =—R /H =~(1-2)/ (1+ 20*)"% = (2u-1)/ 1+ 20%)"

Sincethescaar propertiesare positive, the Poisson coefficient p must be greater than 0.5. Thisisconsistent
withtheexamplegivenin® of irreversibledeformation under linear tension, when the second phase of deformation
withthevolumereturningtotheorigina valueispossibleonly at > 0.5.

Theinvariant £12 essentialy coincideswith the concept of accumulated strain usedin classical mechanics
(the Odqui st hardening parameter)!2

t
C12 = ,(|;Hdt =A (41)

wheretheintengty of thestrainrate H determinesthe equation (37). Theparameter A characterizesthehardening
of themateria and the degree of use of itsplastic properties(intheinitial state A = 0). Separately, we note that
for integrationintheright part (41), theequationsof motion (1) must bewrittenintheform of Lagrange, sincethe
accumul ated deformation should not be determined for afixed point in the observer’s space (Euler), but for a
fixed particleof themedium.

Difference between accumul ated deformation (41) and effective

I,=\I?=(2 +x§ +xy2 +2 +y§ +yy2 +22 +z§ +zy2 -312 (42)
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it consistsinthefact that the/”, canincreaseand decrease over time, whilethe accumul ated strain A, by analogy
withthepath £, dwaysincreases, regardless of thetype of loading trgjectory.

Processesfor which the Odquist parameter A coincideswiththeeffectivestrain (42) are called monotonic.
Typically, such deformationsoccur under the action of asingleexterna force, such aslinear tenson, smpleshear,
or torson, when al deformationsincreasein proportion to asingle parameter. In thiscase, thel oading trgjectory
inthedeformation space hastheform of astraight line connecting theinitia and find States(movement dongthe
shortest path). Inall other cases, A > I'_and the more compl ex the deformation path, the greater the difference
between Aand T,

Liketheinvariant £, anadditiona operator A must be used toincrement theenergy of theparticlecorresponding
totheinvariant&,

ABEy, = k51,0 = k125\/0,f Hadt = ky,AdVy (43)
Theoperator A intheright part of the equation isnot necessary, since by definition theaccumul ated deformation
Aintheinitial stateisequal to 0.

Theunified curve hypothesis of classical mechanics™® assumesthe replacement of aconstant coefficient G
(modulus of shift) inthe condition of proportionality of stressand straindeviatorsfor an elasticregionwitha
positivefunction g(4), caled themodulusof plasticity?. An ana og of the unified curvehypothesisin the space
of Lagrangevariablesistherdations

Tp —On00 Ty T
—2 = =T = =g(A
Xi,cxp _Spie() Yo r g( )

According to theunified curve hypothesis?, theproduct T=g(A)I” determinesthestressintensity T, which
coincideswiththequadraticinvariant of thestressdeviator. Thenthelocal energy associated withthek , property
intheregion of irreversible plastic deformations 6,/ 8\, correspondsto anincrement of thevolumeenergy
density dueto the accumulated deformation A incomparison with theinitial state. Equation (43) takestheform
A3, 18V =Koy =kipA = G(A)A

For modelsof ideal plasticity, linear and power-law isotropic hardening, theexpressionsare used instead of
thecoefficientk , respectively
kp =9(A) =07 = condt ki =9(A) =CA kip = g(A) = CA" (44)

For theelastic region of deformation A = -, weobtain Hooke’s law for the shear T=GI" (G isthe shear
modulus, I"isthe shear strainintensity). In the plastic region, the constant C should be determined based on

experimenta studies, usually by the curvesof hardening under linear tension beyond thedastic limit(2,
Replacingtheinvariant §,  with R changestheinvariant &,

t
£13 = [Rdt= R-1=8V /8, 1= A8V / 8V, = 3¢
0

which coincideswith therelative changein the volume of the particle 3e in magnitudeand sign. Thus, theterm
0E;5 inequation (7) will takeinto account instead of theinvariant £, theincrement of energy that characterizes
the current val ue of the particlevolumein comparisonwith theinitial state
O3 =kiatyx0M = 3kizd\

If wetakethe coefficient k , equal to the modulus of bulk el asticity of the material K, then 853/, we

determinetheaverage Cauchy stress, whichinthe energy model of mechanics correspondsto theincrement of
the average stressin the current state compared to theinitial one o, =2k;, which followsfrom equation (16) for
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the new scal e of average stresses. Thisisthe meaning givento the average Cauchy stress by the anal ogy of the
lawsof e astic volume change and Boyle-Marriott used above. It isal so noted that from the anal ogy of laws, as

well asin meaning 3E3/3\,, thevolumedasticity modul usK shoul d be considered astheactua pressureacting

inthematerial. In addition, we notethat 6E5/3\; it acquiresthesigne, increaseswithincreasing volume, and

decreases otherwise. Thiseffect, which doesnot agree with the usud representation of classica mechanics, was
noted ini*3 varioussigns of changesin thevolumeof body particles during longitudind freevibrationsdid not
requireadditiond energy from externa influences, if thetotal volume of thebody remainsunchangedif thetota
volume of thebody. Thisconfirmsthe possibility of classfying thevolumedagticity modulusasaphysica property
k,=K (45)

but, unfortunatdly, without abase multiplier.

TEMPERATURE EFFECTSIN DEFORMATION PROCESSES

Asnoted above, energy isinvariant with repect to thetype of externd influences. Gravitationd and mechanical
areconsidered above, and wewill focus on the possible temperature effectsin the deformati on processes.

Dissipation, accompanied by thermal effectswiththelossof part of the energy through the heat generated,
leadstotheirreversibility of the processesand, therefore, can only occur in aplastic state. But thetemperature
increase dueto external sources can occur in both elastic and plastic aress.

Totakeinto account thethermal effects, it isnecessary to Supplement the energy balance (27) with anew
term related to external influences, intheform of heat flow o,

dBE =8V (k& + koot +kaCay +keSey + Kooy +kio€ior +k1o€iot + Kasbyar —0e —or)d1 =0 (46)
which for the considered particle can be represented as

op =005 /(dtdVy) = GpodT / dt =Gy Ty

wherec,, p,, T arethe heat capacity, density, and temperature, respectively.

First, consider the casewhentheparticleisinitsorigina undeformed state. For anisotropic material, the
therma energy coming from externa sources|eadsto ahomogeneous expans on with the equationsof motion®#

% =0 (L+arAT) X, =1+or AT (47)
wherea,, isthe coefficient of linear expansion, with anincrement of the particle’s energy

For homogeneous deformation, the invariants of the equations (47) included in the energy balance (46)
determinetheequations

&6 = AL+ 07 AT)? g =H="30T, &0 = R =[(L+ordT)’], = 30T,
£1o = [Hdt = A =~/3ay | AT | &3 = R-1= (1+ a7 AT)® -1~ 30, AT
Changeinvolumeenergy density
OOE'/ 8¥ =hsele +kofl + koo +hiptleys + ey
taking into account theincrement of invariantsuptodTis
d3E | 8V, =[sign(dT)(6ks +Jz) +~3hkyp o |dT | +(Bkg + g )orrdT; (49)
Earlier, when discussing thelocal energy (38) and (39) withtheinvariants&, and &, , it was noted that the

energy of changing the shape of SE, can be converted into the energy of changing the volume of JE, ,, with

subsequent adjustment of other types of energy included in the energy balance. With uniform heating, both
invariants&, and & increaseand the mentioned transitionisimpossible. Thesum of theterms dok, and doE,  will
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be 0if only the second time derivative of temperatureis 0. Excluding heat shock for the conditions under
consideration, whichalows T, #0, for theenergy balance (46) takinginto account 6, = 2k, (45) and (48) we
obtain
Sign(dT)(3, +3K —Gypg / 0ty ) +33k, =0

Sincethefirst term changes sign during heating and cooling, and the coefficient k12 cannot be negative, the

equality holdsif onlyintheinitial statek ,= 0. This corresponds to uniform heating, when there is no hardening,
for any law of hardening (44) k ,= 0 follows. The condition of the energy balance remains equal

o+ K=Cpy/ (Bor) (50)

Thetermsin theleft part wereinterpreted above as measures of thevolumeenergy density of particlesinthe
initid state. It can beargued that both parts of thisequality must be constants of materias. Thisisconfirmed by
the Gruenei sen law established based on experimentd?Y. Itisespecially important thet thisequality, aswell asthe
properties (11), includesthe base multiplier —the density of the material p,,

Itisnoted abovethat the propertiesof k, and k , can contributeto energy transitionswith the condition being
met kyH +kR =0. For each process, the kinematic parametersinvolved in thisequal ity can takeindependent
vaues: theintensity of thestrain rate H characterizesthe shape change, and thetime derivative of the Jacobian R

—the volume change. It is interesting to note that under hydrostatic loading, when H=0and R =0, thetrangtion

of theenergy of volume changeto theenergy of shape changeisexcluded, the condition kyH+kR =0 isnot
fulfilled. When therma effectsoccur the mentioned equa ity must be supplemented with asummand

koH +kyoR +0pAT =0 (51)

which determinesthe dissipated part of the energy and removesrestrictionson theratio of propertiesk, andk .
Equation (51) assumesthat asmilar term ddk; =g, 0\ should beincludedin equetion (46), Sncetemperature

becomesanew parameter of theenergy state of particles, whichisnot provided for in the equationsof motion (1).
Taking theintensity of the shear strain rate (37) astheinvariant &, and the dissipativefunction (34) asthe
coefficient k;, theenergy condition for thetransition of the strain energy to temperaturetakestheform

T, +KioR +CpoAT =0

It can beargued that the energy SE,, = kR 8V, rel eased by aparticlewhen itsvolume changes can be spent
either onincreasing thestressintensity toavalue t, =| k,,R | without changing the temperature of the particle
(AT =0),if 1, <7, , Or onincreasing thetemperature (AT > 0), if thestressintensity hasreached thelimit value
T, =T,

In General, when thermal effects may occur during deformation dueto external or internal sources, the
energy balance should be considered in theform (46) with an additional term do; =g, T8\t . Includedinthe
right part, theinvariants must take into account the actual deformed state of the particle.

DISCUSSIONAND CONCLUSIONS

Theenergy mode doesnot contradict classicd mechanicsand bringsclarity to the understanding of thebasic
laws associ ated with motion. Asthe experience of solving various problemsshows 8, thetransitiontoanew
scale of average stressesand onemodulus of easticity reduces mathematical difficultiesand dlowsusto obtain
new results, including on thefeatures of the energy state of particlesand the body asawhole.

Theabove mentioned physical property ratios 2k =3K, o, = 2k.. Equation (50) alows usto obtain concrete
resultsusing thedensity of the material, which, asnoted in section. 2, ismandatory for all scalar coefficients
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includedintheright part of equation (7). For thevolumeé asticity modul usK, the cal cul ated data.can be compared
withthetable data'®>¥, if wego to the energy scale of specific heat in equation (50) and take o, = 0F, then

K =Gy (3ar)

Theresults (TABLE 1) have the same order, the ratio depends on the type of material. The reason for
deviationsmay bethefrequently used cal culation of thevolumed asticity modul usK through young’s modules E
or theshear G using the Poisson’s ratio (for example, for lead in TABLE 11). Additiond propertiesmay play a
significant role. Thegreatest differenceswereobserved for metaswith aFCC | attice.

TABLE1
. Density Heat acity Linear exp.coef ke = Kcalc 18
Meal  Gridtype y C;p y o P conl (Za) Gopol (B Ktabl™  Ktabl/Kcalc
kg/m*  N*mkg*C 1PC*10° GPa GPa GPa 1
Aluminum FCC 2700 870 23,9 49,14 32,76 75,8 2,31
Copper FCC 8960 383 16,5 103,99 69,33 1376 1,98
Titanium HCC 4500 520 85 137,65 91,76 107 1,16
Nickel FCC 8900 443 13,3 148,22 98,81 161 1,63
Lead FCC 11300 128 29,3 24,68 16,45 46 2,80
Zinc HCC 7100 385 15 91,12 60,74 60 0,99
Iron BCC 7900 483 11,7 163,06 108,71 169 1,55

FCC - face-centered cubic lattice, BCC — body-centered cubic lattice, HCC — hexagonal compact crystal lattice

For thecoefficient k , inclassical mechanics, thereare 3 versionsof theformulas(44), taking into account the
features of hardening™*?. In the new mean stressreference system, 2k can be adopted instead of C, which
alowsthebasefactor to beincludedin thisphysical property, for example, for power hardening

ki = 2kgA" = (Copo / o7 ) A"

where A should be determined by the methods known in classical mechanicsfor cal culating the accumul ated
drain. Inthiscase, k , isnot aconstant, but thereisno such requirement in equation (7). Thecoefficient of friction
intheproperty k, isalso not aconstant. It ispossiblethat the coefficient k , will requirean adjustment that takes
into account the dependence of the heat capacity on temperature and deformation.

The need to takeinto account the sign of thetermsin equation (49) allows usto assert that the successive
dternation of heeting and cooling, aswdl| asstretching and compress on, cannot be cons dered reversible processes.
They can lead to changesin the properties of materialsidentified with coefficientsk ,, k .. Anexampleisthe
Bauschinger effect™29, whichismanifested inincreasing theyield strength of amaterial dueto pre-deformation
of theoppositesign.

It was noted abovethat the properties of k, and k , can contributeto energy transitionswith the condition

beingmet kyH +k;oR =0. For each process, thekinemétic parametersinvolved in thisequaity can takeindependent
vaues: theintendity of thestrain rate H characterizesthe shape change, and thetime derivative of the Jacobian R
—the volume change. It is interesting to note that under hydrostatic loading, when 7= 0and R #0, thetransition

of theenergy of volume changeto the energy of shape changeisexcluded, the conditionisnot fulfilled. When
thermal effectsoccur the menti oned equa ity must be supplemented with asummand

koH +koR +CpAT =0 (51)
which determinesthe dissipated part of the energy and removesrestrictionson theratio of propertiesk, andk .

Equation (51) suggeststhat asimilar term ddE; = cpoTi8Vodt should beincluded in equation (46), since
temperature becomesanew parameter of theenergy state of particles, whichisnot provided for inthe equations
of motion (1). Additional researchisneededto makefina decisionson these properties.
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Asaresult, in equation (7), the energy state of aparticleisdetermined only by 3 physical propertiesof the
materid: thedensity p,, theheat capacity ¢, andthelinear expansion coefficient o, (or volumetric compression
coefficient B =30.,) of thematerial. Moreover, thebas ¢ density isthat which determinesthekinetic energy of the

particle(k, =p,/ 2). Inother coefficients, the density should be considered asthemain factor, and al theothers

—as additional characteristics of the considered type of local energy. In particular, k =p,g it characterizesthe
features of themediumin which themovement occurs(gravitationa , magnetic, e ectricfiedsor their dbsence, as

inthe case of spring deformation). Thecoefficient k, =podfy assumestheenergy consumption at the contact of

two bodies, the coefficient of frictionf, cantakeinto account theratio of the properties of themateria sof these
bodies. When absol utely solid bodies are moving, it ispossibleto change 4 types of energy, characterized by
coefficientsk , k,, k, andlosses on heating (dissi pation) by analogy with equation (51).

For amodel with asinglemodulus of eladticity, if wetakek =0, theenergy state of the particlesisdetermined
by coefficientsk,, k ., whichdiffer fromtheaveragestressintheinitia stateof theparticle o, = cyp, / o only by
numericd coefficients

ks =00/2=Copg/ (2017) kg =K=04/3=Gpo /(30)
The coefficientsk, and k , are not specified, they do not affect the energy state of the particles, and they only
determine energy trangtionsassoci ated with changesin shape, volume, and dissi pation according to equation (51).
Theuseof asingled astic modulusk; inthefield of reversible deformations al owsambiguous combinations

of mean deformationseand standard deviation /" at afixed value of elastic deformation 12 (40). Thesystem can

accept various configurationswithout additiona externa influences, including thosewith extremeva ues of eand
I'".the Possibility of spontaneoustransition of the energy of shape changeto theenergy of volume change (with or
without dissipation) isjustified when analyzing the components of thelocal energy of particleswithinvariantsg,
and & . Thisallowsusto propose amechanismfor thetransition toirreversible deformationsin theform of a
cyclic processwith theaccumulation of elastic energy inthefirst phase, usualy with anincreasein thevolumeof
the particle, and the dissipation of excessenergy in the second phase of the cyclewith thereturn of the particle
volumetoitsorigina vaue?.

Thevavethat sartsthe processof converting areversible deformationinto anirreversibleoneislocated in
theterm 6E, .. According to equation (51), dissipation (T>0) isonly possiblewhen thevolumeof R<0decreases,
snceH>0. Theresulting Srainrateintensity H isintegrated into the accumul ated strain A with theresult displayed
inthesummand E ..

Thekey to actuating thevalve can beanincreaseinthe standard deviation 7, allowed inthe elastic state by
theinvariant (40). Asfollowsfrom equation (52), for positive by definition eand 77, anincreasein the standard
deviation />0 leadsto anegativevauee< 0 and, accordingly, adecreasein thevolumeR<O.

Thestresslevel o, accordingto equation (16) andthevaueR at whichthevalveistriggered determinethe
new value of the average stress 6, + 6, = o, instead of the previous o, which determinesthe new level of
volumetric energy density and hardening with the possi ble manifestation of the Bauschinger effect.

According to theexisting terminology, thek , property should bereferred toasmechanical, asit contains, in
additionto physicd properties, an additional multiplier, and characterizestheres sanceto externd loads. Explicitly,
the Poisson coefficient, Young’s modules E and shift G arenot included in the physical propertiesaccordingto
theenergy model of mechanics.

Intotal, 8 coefficients of the equation (7) contain only 3 physical properties(TABLE 2).

TABLE?2
ky k, K, Ke ks Ky Kis
pog po/2 pofir Copo / (2017) 0 (Gopo / aup) A" (Copo / (3air)
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Takinginto account theinitial valuesof theinvariants(al but k, areequal to 0), intheinitia state, thevolume
and massenergy densitiesare

8, / 8V =3 =150 =y / (217) 8B, /9m=1,5,/ oy

The specification of physical propertiesincluded asscaar coefficientsinthe main energy equationsdoes not
affect the General relations described ini®8l, The equations of motion in both elastic and plastic regions must
satisfy the Generd differentia equation (19), whichistransformed for amodel withasinglee astic modulusk; to
theform (21). They are used in the study of energy features of freevibrations*® and resonance™.

CONCLUSIONS

Only 3 physica properties(density, heat capacity, and linear expang on coefficient) determinethe behavior of
materias(elasticmodulus) and theenergy state of particlesunder reversibledeformations. Inthefiddof irreversible
deformations, the dependence between the quadrati c invariants of stresstensorsand strain ratesaccordingto the
theory of plasticflow of classcal mechanicsof adeformablesolid playsadetermining role. Theresultsobtained
can beusedin sdecting criteriafor the devel opment of new materia sand technol ogiesfor their processing. These
criteriashoul d takeinto account the dependence of densty, heet capacity, and volume compression ontemperature
anddtran.
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