
INTRODUCTION

The concept of �physical properties� is ambiguously interpreted in different sources. The reference[1] refers
to physical properties of a material that do not depend on the structure and can change without applying external
loads, such as density, specific electrical conductivity, coefficient of thermal expansion, magnetic permeability,
and lattice parameter. It is separately stipulated that mechanical properties cannot be attributed to physical
properties.

According to the mining encyclopedia[2], physical properties include characteristic qualities due to the
composition and structure of a substance that are constant under certain external conditions and change naturally
with changes in the latter, such as density, hardness, plasticity, etc. In this list, �plasticity� is questionable, since,
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unlike density and hardness, plasticity does not have a quantitative assessment and generally accepted methods
of determination.

Metal scientists[3] believe that physical properties characterize the state of the material, as well as its ability to
respond to external factors that do not affect the chemical composition of the material. Physical properties
include, in addition to magnetic and thermal, flexibility, shrinkage and elongation without specifying the conditions
for their determination.

The free encyclopedia[4] refers to them all the properties inherent in a substance outside of chemical interaction,
including not only optical, thermal and electrical, but also mechanical.

Analyzing different sources, we can note the uncertainty in relation to the Poisson�s ratio, which characterizes

the ratio of transverse and longitudinal deformations in linear tension. In works[5,6], it is referred to the physical
properties of the material along with the young�s modulus, and in textbooks on the resistance of materials[7,8] � to
the mechanical characteristics, which include the limits of yield and strength. The peculiarity of the latter is that
they can change within 15% or more depending on the features of metal production, storage conditions, testing,
etc.

For the sake of certainty in this paper, we will understand the physical properties as scalar stable characteristics
of materials, which allow us to calculate directly unobservable energy parameters of the state through the measured
kinematic characteristics of motion.

The purpose of this work is to substantiate the physical properties that determine the energy characteristics of
particles during the deformation of bodies using a model of mechanics based on the concepts of space, time and
energy[9].

BASIC CONCEPTS OF MECHANICS BASED ON THE CONCEPTS OF
SPACE, TIME AND ENERGY

The energy model of mechanics[9,10] is based on the statement that the equations of motion
( , )i i px x t  (1)

where ( , , )ix õ ó z , ( , , )p      � Euler and Lagrange variables, respectively,,t � time, carry all information about

external influences and changes occurring in each particle of the observed mechanical system. Energy as a generalized
scalar characteristic of any types of motion[11] must take into account all independent invariant characteristics of
the system (1).

The choice of the reference system is subjective, so the invariants can only be defined in terms of derivatives

of Euler variables in time and directions. Given the different nature of coordinates ( , , )ð      and time t, two

independent operators are used to denote infinitesimal increments of any function ( , , , )f t   , as in[9,10]: the operator

d for increments in time d ( , , , ) d ,tf t f t     and the operator � for increments in space

( , , , ) ,f t f f f           where , ,  � are infinitesimal increments of Lagrange variables.

The main information about the state of particles is provided by the Jacobian components

, pi p i

x x x

x x y y y

z z z

  

   

  

 
 

     
 
 

(2)

In the most General case, the invariants of system (1) are 3 modules of the vectors displacement u, velocity
v, acceleration w, and path s:

2 2 2 2 2 2
1 ( ) (y ) (z )x y zu u u u x           
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2 2 2 2 2 2
2 x y z t t tx y z       v v v v 2 2 2 2 2 2

3 x y z tt tt ttw w w w x y z       

2

1

4

t

t

s dt   |v| (3)

three invariants of the tensor , ,
pi p ix x     that determine the deformation of the particle:

5 x y z      2 2 2 2 2 2 2 2 2
6 x x x ó ó ó z z z                  7 , 0| |i px R V V      (4)

three invariants of the strain rate tensor , , pi t p i tx x    :

8 t t tx y z      2 2 2 2 2 2 2 2 2
9 t t t t t t t t tx x x ó ó ó z z z                  10 , pi tx   (5)

and three time integrals of the three invariants (4) of the strain rate tensor:

11 8dt  
1 2

12 9 dt  
1 3

13 10 d .t   (6)

The energy carriers are particles, including infinitesimal ones with volume 0 .V    In the simplest version,

the generalized scalar function ( )iÅ Å     can be written as the sum of 13 terms, each of which is represented by

the product of the corresponding invariant on the volume 0V  and a scalar multiplier ,ik that ensures equality of the
dimensions of the terms:

13 13

0
1 1

( )i i i i
i i

Å Å k V
 

        (7)

Equation (7) assumes the existence of 13 types of energy that characterize in General the movement of
absolutely solid or deformable bodies, taking into account various factors manifested in changes in the position,
volume and shape of particles.

Since the starting point of various types of energy can be chosen arbitrarily, it is advisable to use the law of
conservation of energy as an increment

13

0
1

( ) 0i i
i

d E V d k


    (8)

Systems that include interacting bodies that are not affected by bodies from other systems that are not
included in the considered system are called isolated (closed). In other words, in an isolated system, the cause of
motion may be material objects within the system. Only for isolated systems can the energy conservation law be
used in the form (8).

Any part of an isolated system can be considered a separate (closed) subsystem if the action of external
causes in relation to it is replaced by mathematical images equivalent in their influence on the equations of motion,
called external forces. An isolated system differs from a dedicated one by the absence of external forces.

The particles inside anybody cannot represent an isolated system, so the law of conservation of energy for a
particle must be supplemented with a function that takes into account the interactions at its boundaries. Denoting

the energy equivalent of external influences by ed E , instead of (8) for the particle should be written

13

0
1

( ) 0i i e
i

d E V d k d E


      (9)

Equation (9) is equivalent to the first beginning of thermodynamics for a continuous medium particle[5], according
to which the work of external forces is spent on changing the kinetic, potential, elastic or other types of energy of
the particle. All known forms of the laws of motion[12] should be considered as special cases of equation (9).

The scalar coefficients k
i
 included in equations (7) � (9) must characterize the physical properties of the

material or medium in which the movement occurs. Since they, together with the invariants î
i
, are included in the

law of conservation of energy (8), only 12 can be independent.
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The peculiarity of assumption (7) with a linear combination of invariants is reduced to the mandatory appearance
of a common coefficient multiplier k

i 
(i = 1, 2 ..., 13), which can be considered as a basic energy property, since

it determines the scale of the energy scale in all its manifestations.
In contrast to classical mechanics, in the energy model there is no fundamental difference between absolutely

solid and deformable bodies. In the absence of deformation, part of the terms in equation (9) turns to 0 due to
constant invariants.To determine the basic energy property, it is sufficient to consider the free fall of a solid body
in the gravitational field of the Earth with a change in two types of energy[9,10]. If you do not take into account the
air resistance, the system can be considered isolated, the movement occurs under the law of conservation of
energy in the form (8).

By orienting the z-axis to the center of the Earth, we write equations (1) as
, , ( , )zx y z u t       

The increments of potential dE
1 
and kinetic dE

2
 energy will be

1 1 0d d 0tE k V z t    

2
2 2 0 2 0d d( ) 2 d 0z tt tE k V k V z z t     v

Law of conservation of energy (8)

1 2 1 0 2 0d d d 2 d 0t t ttÅ Å k z V t k z z V t         (10)

for the considered version of the motion determines the relationship between the coefficients 1 22 .ttk k z  Using the

generally accepted notation for acceleration of free fall ,ttz g we get 1 22 .k k g In equation (10), the coefficients
k

1
 and k

2
 characterize the properties of the particle and should be assumed

1 0k g  , 2 0 / 2k   , (11)

then for a body with volume V
0
 and mass m we get the generally accepted expressions for kinetic and potential

energy
2

k p2, .E m E mg z   v

Thus, the basic energy property for potential (in the gravitational field of the Earth) and kinetic energy is the
density of the material P0. There is reason to believe that it should be included as a multiplier in all other types of
energy through the coefficients k

i 
(i = 3, 4, ..., 13). This confirms the use of body mass in estimating the energy

cost of friction (k
4
) in the movement of absolutely solid bodies in classical mechanics

4 4 0 4 0 0frd Å k V d gf V ds       (12)

where 4 0 frk gf  , f
fr
 � is the coefficient of friction.

The base multiplier of the physical propertiesshould be taken into account when choosing experimental and
other methods for determining physical properties that lead to equation (9)

The experience of solving various problems with absolutely solid and deformable bodies[10], including with
vibrations[13,14], allows us to reduce the number of invariants that affect the energy state of particles and moving
bodies in General on the basis of sufficiently strong arguments.

First of all, this concerns accelerations. It is usually noted[5] that the equations of motion (1) are doubly
differentiable functions. This does not exclude the mention of the invariant î

3
 in the concept of energy (7). However,

accelerations are discontinuous functions by their nature, the time derivative of accelerations has no physical
meaning, and therefore they should be excluded from equations (8) and (9).

Indeed, in the gravitational field of the Earth, a body resting at a certain height does not have acceleration, but
if it begins to fall, the acceleration immediately acquires the value g = 9.81 m/s2. In this case, the energy of the
body does not change, this moment corresponds to the appearance of speed and, accordingly, the beginning of
changes in potential and kinetic energy. It is possible to determine accelerations from equation (9), since they
participate in the conservation law as time derivatives of the velocities included in the invariant î

2
.
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The linear invariant î
5
, which determines the average relative length of the projections of the three base faces

of an infinitesimal parallelepiped on the coordinate axes that coincide with them in the direction in the initial state,
should also be excluded from further consideration. The sum of elements of the main diagonal of the Jacobian (2)
is indeed invariant with respect to the rotation of the coordinate axes[15], but it changes when the particle is rotated
as a rigid whole.

In particular, when the body rotates relative to the z axis with the equations of motion

cos( ) sin( )x t t    sin( ) cos( )y t t     z  

and Jacobian (2)

,

cos( ) sin( ) 0

sin( ) cos( ) 0

0 0 1
pi

t t

x t t

   
   
 
 
 

the invariant î
5
, in contrast to î

6
 and î

7
, depends on the angle of rotation of the particle as a rigid whole,

5 2cos( ) 1t    6 3  7 1 

which should not affect the strain energy. As a consequence, the invariants î
8
 and î

11
 must also be excluded from

equations (7) � (9) in the future.

External forces can be of any nature: gravitational, magnetic, or mechanical. In particular, for an infinitesimal
particle inside the body, the energy equivalent of external influences åE  on the movements of its boundaries can

be determined by the scalar product of the acting forces Ð  and displacements dr [9]

d ( d ) ( )dåÅ t       P r P v (13)

Taking into account possible changes in forces and velocities on opposite faces, assuming all functions are
differentiable and set in Lagrange variables, we obtain[9,10] from equation (13) for the rate of change in the specific
energy of external influencesùå, taking into account the rule of summation by a repeating index

0 , ,d ( d )
på å pi i t i t pi pÅ V t x x         (14)

The Lagrange stresses ô
pi
 form an unsymmetric tensor of the second rank. Representing the increment of the

energy of external influences through the volume density of its rate of change (14), the law of energy conservation
(9) takes the form

 0 1 1, 2 2, 4 4, 6 6, 7 7, 9 9, 10 10, 12 12, 13 13,d ( )d 0.t t t t t t t t t eÅ V k k k k k k k k k t                      (15)

it can be considered as a form of energy balance.
The properties determined by the coefficients k

6
 and k

7
 should determine the energy changes of the particle

in the area of elastic deformations. Taking into account the previously made remarks about the exclusion invariant
î

5
 and the relations given in[9,10], the coefficientk

7
 is an additive component of the average voltage

6 6 72 / (3 )k R k    (16)

it can only affect the selection of the starting point of the average voltage scale.
In[9,17], there are reasons to consider average stresses as a measure of the volume energy density and not to

accept them as equal to 0 in the initial state of the particle. In particular, the feasibility of switching to a new
average stress scale is consistent with the Boyle-Marriott law for ideal gases, which coincides with the law of
elastic volume change 3K  , if we consider the volume elasticity modulus K as the actual pressure p

0
 in the

material, and the hydrostatic stress ó as an increment of the internal pressure Äp

0 0 1 1 0 0( )( )p V pV p p V V    or 0 0/ 3p p V V K      

An argument in favor of transferring the beginning of the average stress scale can be a comparison of changes
in elastic and potential energy when the rod is stretched under its own weight[10].
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Consider two pivotally connected rods OA and AB of length L, located in the initial state in the horizontal
plane x = 0 (the x axis is directed to the center of the Earth) with the coordinates of the axes of the hinges O(0,
0), A(0, L), B(0, 2L). At some point, the hinge B begins to move to the origin. When the points O and B coincide,
the rods OA and AB take a vertical position. The deformation of rods under the action of their own weight is
described by the well-known[7,8] relations

xx gx  /xx gx E 

where E is Young�s modulus. For the total length L the strain energy is

0,5 0,5
3def xx xx

V

gL
E V mgL

E


      (17)

The change in the potential energy of the position due to gravitational forces during the transition from an
undeformed horizontal state to a deformed vertical state is

0,5potE mgL  (18)

The difference between the right parts of equations (17) and (18) determines the multiplier (ñg/3E), which for
steel (ñ = 7.8 g/cm3, g = 9.8 m/s2, E = 200 GPa) has the order 10-7 1/m.

There is no discrepancy when comparing the energy change in the new scale. To fulfill the condition of energy
invariance with respect to the choice of the velocity reference system[9,10], the equation must be fulfilled

, 0 0 , 0pi
i t i i tt

p

x g x
 

     
(19)

For a new average stress scale with a single modulus of elasticity

 
6 ,2pi i pk x  (20)

it is converted to the form

, 0 0
, ,

6 6

0
2 2

i p
i t i i tt

p

x
x g x

k k

  
     

(21)

Taking the hypothesis of plane sections, according to which 0x x   , for the equation ( , )px x t   when

62x k x    we get

2 2
0 6/ / (2 )x g k      or 2

1 20,5 Cx C    

As boundary conditions for determining the integration constants C
1
 and C

2
, we use the assumption that there

are no displacements at the upper end (x = 0 at 0 ), and deformations at the lower end ( 1x   at 0L  ).
Then for the equations of motion (1) under tension from its own weight we get

0[1 ( / 2)]x L   0[1 ( )]y L   0[1 ( )]z L   

where ì is the Poisson coefficient, with Jacobian (2)

,

1 ( ) 0 0

1 ( ) 0

0 1 ( )
i

x x x L

x y y y L

z z z L

  

   

  

    
          

       

and the volume density of elastic energy by changing the invariant î
6

2 2 2 2 2 2
0 6 0 0/ {[1 ( )] 2[1 ( )] 2 ( )}defÅ V k L L            
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As noted above, the ratio 0 6/ (2 )g k   is on the order of 10-7 1/m. Ignoring the squares ø2, we get

0 6 0 0 0/ 2 ( )(1 2 ) ( )(1 2 )defÅ V k L g L           

or, after integrating by volume with mass m,

0
1

(1 2 )
2defE mgL   (22)

The resulting ratio cannot be considered accurate. In particular, the equations of motion do not satisfy the

boundary conditions 1y   and 1z   on the side surfaces of the deformable body. However, the change in the

potential energy of the position of deformable rods (modulus)

 0 0

0 0 0 0 0 0 0
0 0

[1 ( / 2)] 0,5 (1 2 /3)
L L

potE gF x gF L mgL L            (23)

it has the same order as the elastic energy change. Both results (22) and (23) coincide in the absence of transverse
deformations ( = 0).

As an additional argument in favor of switching to a new scale of average stresses (20), we can compare the
dependence of the Cauchy average stress from the energy model of mechanics, given in[9],

, 6 63 2pi i pR x k     (24)

with experimental data for hydrostatic compression when
1/3

62k R
 

After switching to the generally accepted scale by shifting the starting point by 2k
6
 we get

1/3 1/3 1/3
6 62 ( 1) 2 (1 ) /k R k R R 

     or 3
61/ [ / (2 ) 1]R k   (25)

The ratio (25) at 62 3k K and K=169 GPa differs from that established experimentally for iron in the range

up to 300 GPa[18]

6 10 21 5,286*10 0,8*10R  
   

with an error of no more than 0.016%.
For linear stretching with equations of motion

(1 )xxx   (1 )xxy  (1 )xxz    (26)

from equality (24) for the generally accepted scale (after shifting the average stress scale by the value 2k
6
), we get

62 (1 2 )xx xxk      or xx xxE   , if we accept  62 3k K and take into account the dependence between the

elasticity modules  3 (1 2 )E K   .

Taking into account the above arguments, k
7
 = 0 is accepted in the following statement. As follows from

equation (16), the new scale provides for an mean stress 0 62k   in the initial state (î
6 
= 3, R = 1). The multiplier

k
7
 should be excluded from further analysis as not related to the physical properties that determine the energy

state of the particles. But this conclusion cannot be considered a sufficient reason for excluding coefficients k
10

,
k

13
with invariants î

10
 and î

13
. Instead of equation (15) for the energy balance, we get

 0 1 1, 2 2, 4 4, 6 6, 9 9, 10 10, 12 12, 13 13,( ) 0t t t t t t t t ed Å V k k k k k k k k dt                     (27)

The number of physical properties required to describe the energy state of particles has been reduced from 13
to 8.

From the considered examples, it follows that the coefficient k
6
 has the order of the volume elasticity modulus,

but, unfortunately, they do not give its exact value and do not allow us to distinguish the base factor (density ñ
0
) in it.
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POSSIBLE METHODS FOR EXPERIMENTAL DETERMINATION OF THE k6 MODULE

Methods for experimental determination of physical properties included in equation (27) should meet the
conditions of uniform deformation and high accuracy of determining energy costs. It is the inhomogeneity of the
deformed state that did not allow us to find the relationship between k

6
 and the tensile density on its own weight.

It is preferable to consider the method of deformation in which the linear and cubic invariants of the tensor (2)
preserve the initial values k

5
=3 and k

7
=1, then the energy of the particles changes only due to the quadratic

invariant î
6
.

This option can be implemented by compressing a spring[10] with the radii of the wire r
w
 and the Central layer

of turns R
s
 in the global coordinate system of the observer ( , , )ix x y z , whose z axis coincides with the axis of the

spring. Mutually orthogonal axes x and yare located in a horizontal plane, orthogonal to the z axis, the x axis
passes through the center of the section of the lower turn with coordinates (R

s
, 0,0).

The initial coordinates of any particle can be expressed through the helix angle ø
0
 from the x-axis to the

considered cross section, the radius of the particle r
0
 in this cross section and the angle 

0
 characterizing the

position of the particle relative to a horizontal plane

0 0 0 0( cos )cossx R r    0 0 0 0( cos )sinsy R r    0 0 0 0 0/ (2 ) sinz h r       (28)

where h
0
 is the step of the helix in the initial state. Independent arguments in the system (28) can vary within

00 wr r  , 00 2 N    and 00 2  , N is the number of turns. The radius of the Central layer of the turns R
s

is the same for all particles and can only change as the spring R
s
(h) is compressed.

In an arbitrary loaded state, the position of any particle can be written in the same way, but taking into
account the current values of the angle ø, the radius of the particle in the cross section r, the angle  and radius of
the Central fibers of the spring turns R

si

( cos )cossix R r    ( cos )sinsiy R r    / (2 ) sinz h r     (29)

where h is the step of the spring turns in the current state. It is possible to change 0 wir r   if the wire diameter

changes during the deformation process, but for other arguments the range is assumed to be unchanged 0 2 N  ,

0 2  .
To determine the derivatives included in the Jacobian of type (2), we use the General rules for differentiating

implicit functions, considering the parameters of the auxiliary system as functions of Lagrangian coordinates, for

example, for the function ( , , , )x t  

( , , , ) { ( ) ( , , , )cos[ ( , , , )]}cos[ ( , , , )]sx t R t r t t t               

then

/ cos cos sin cos ( cos )sinsx x r r R r               (30)

where the lower indices of the parameters r, ø,  correspond to the partial derivatives of the specified Lagrange
variables.

The derivatives included in the right part can be found by considering the spatial increments of Lagrange

variables in the system (28) by changing the parameters of the auxiliary system 0r , 0  and 0

0 0 0 0 0 0 0 0 0 0 0cos cos sin ( cos ) cos sinsr R r r             

0 0 0 0 0 0 0 0 0 0 0sin cos cos ( cos ) sin sinsr R r r            

0 0 0 0 0 0 0sin / (2 ) cosr h r         
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By solving this system of linear equations with respect to increments 0r , 0 , and 0 , we obtain inverse

dependencies of the auxiliary system�s increments on the Lagrange variables � increments. They determine the

derivatives required for equations of type (30) that coincide with the multipliers at increments of the corresponding
Lagrange variables

0 0 0 0 0 0 0 0 0 0 0 0(cos cos sin sin ) (sin cos cos sin ) sinr               

0 0 0 0 0 0 0 0 0 0 0 0(cos cos sin sin ) (sin cos cos sin ) sinr               

0 0 0 0(sin cos )/      

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0

( cos sin sin cos ) (sin sin cos cos ) sco
r r r

  
               

where 0 0 0cossR r    , 0 0 0/(2 )h   . Using the common notation for partial derivatives, we get

0 0 0 0 0 0/ (cos cos sin sin )r       0 0 0 0 0 0/ sin cos cos sinr      

0 0/ sinr    0 0 0/ sin /   

0 0 0/ cos /     0 0 0 0 0 0 0/ ( cos sin sin cos ) / r       

0 0 0 0 0 0 0/ (sin sin cos cos ) / r         0 0 0/ cos / r   

For derivatives that are included in equations of type (30), it is necessary to take into account possible
changes in the parameters r, ø, when the spring is deformed, using the dependencies

( , )si si sR R h R 0( , )r r h r 0( , )h  0( , )h   

Then the derivatives, in comparison with those given in equation (30), will have a new multiplier of the type 0/f f  ,

for example, for the ones used in the definition below /x x 

0
0 0 0 0 0 0 0 0

0

( , )
( , ) / / * / (cos cos sin sin )

r r h
r r h r r r

r


            



0
0 0 0 0 0 0 0

0 0

( , ) 1
/ / * / ( cos sin sin cos )

h

r

 
              



0
0 0 0

0

sin
/ / * / /

 
         



This results in the bulkiness of all subsequent equations, for example, instead of (30) after replacement r ,

 , and  ,

0
0 0 0 0 0 0 0

0

0 0 0 0 0 0 0

sin
{ / }(cos cos sin sin )cos cos { / } ( cos )sin

{ / }( cos sin sin cos ) / sin cos

six r r R r

r r



 
              



          

If we now assume that the derivatives in curly brackets and the current coordinates are close to their initial
values

0/ 1r r   , 0/ 1   , 0/ 1   , 0r r , 0  , 0   , (31)

then the right side of the previous equation is converted to a constant
2 2 2 2 2 2

0 0sin cos sin cos cos (sin cos ) sin cos sin cos sin cos sin 1x                      
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In the same way, ignoring the size change in the results, except for the spring height, we get the final dependencies

for the elements of the Jacobian (2), for s siR R const 

1
x



, 1

y



, 

0 sin
2

h hz 
 

 
, 

0 cos
2

h hz 
  

 
, 1

z




Compression of helical cylindrical springs is accompanied by shear deformations with equations of motion

x   y 
0 ( sin cos )

2 ( cos )s

h h
z

R r


    

  
(32)

Note that if we find the equations of motion based on systems (28), (29) and assumptions (31), instead of
(32) we get the equations of motion of an absolutely rigid body without any deformations

x   y 0

2

h h
z


  



Equations (32) satisfy the condition of independence of energy from the choice of the velocity reference
system (21), which for the considered case (in the absence of gravitational and inertial forces) leads to Laplace
equations for each of the coordinates[16,17]

0x x x     0y y y     0z z z    

The volume of particles remains unchanged , 0| | / 1
piR x V V     , and the volume density of the acquired

elastic energy is determined by a change in the invariant î
6

22
0 0

6
0 02 2 ( cos )s

h h h h

R r

   
     

      

If s wR r , the deformation can be considered the same across the entire wire section

22
0 0

6 2 2 s

h h h h

R

   
    

    

The volume-integral elastic energy is (N is the number of turns)

 
2

20
6 2def w

s

h h
E k r N

R




The work of external forces spent on spring deformation can be determined by the relative compression of
the spring, the change in the potential energy of the loading body, or the height of the rebound of a body with a
known mass previously located on the end surface of the compressed spring.

For experimental studies, a helical plate spring with a rectangular cross-section (with a height greater than the
width) is preferred, for which the calculation of the deformed state does not differ from the above, only the area
of determining variables in both coordinate systems used changes. The accuracy of the result is improved by
reducing the volume with maximum errors compared to helical cylindrical springs with a round cross-section of
the turns.

PHYSICAL PROPERTIES IN THE FIELD OF IRREVERSIBLE DEFORMATIONS

To specify the meaning of the coefficients in the right part of equation (7), which characterize irreversible
deformations, consider the terms with invariants (5) � (6), which are included in the energy balance (27). In the
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absence of a rigid rotation of particles, the invariant î
9
 practically coincides in meaning and value with the square

of the intensity of the strain rates H[19]

2 2 2 2 2 2 2 2 2 2
9 t t t t t t t t tH x x x ó ó ó z z z                   (33)

To assess the role of this invariant in the energy balance (27) , we can use the theory of plastic flow in the
classical version of deformable solid mechanics, according to which the stress and strain rate deviators are
proportional[19,20]

0

, 0

pi pi e

i tp pix s H

    
  

 
(34)

where ô
e
 is the intensity of the tangential stresses determined via the quadratic invariant of the deviator[19], s

0
 is the

equivalent of 
0
 for the tensor x

i,tp
 , ä

pi
 = 1 for , ,x y z      and , ,t t tx y z   , for all other cases, ä

pi 
= 0. The

right part (33) coincides with the square of the intensity of the strain rate H at s
0
 = 0.

The scalar coefficient of proportionality ë with dimension [Pa*s] can be determined experimentally for
processes with uniform deformation by the consumed specific power[20]

2
dT H H   (35)

(35) at a known strain rate H. Taking into account the relations (34), the energy component in equation (7) with
the invariant î

9
 can be written as

2
9 9 9 0 9 0 9 0( / )E k V k H V k V          (36)

The expression in brackets (k
9
/ë) characterizes not only the material properties, but also the deformation

conditions. On this basis, it can be transferred to the category of mechanical properties.
It is important that the invariant î

9
 with dimension [1/s2] does not characterize a state, but a process. It differs

from 0 only in cases when the surrounding particles are in motion. If the speed of the surrounding particles is equal
to 0 or the same as the motion of rigid bodies are derived from the velocities x

i,tð and invariant î
9
 turn to 0. The

coefficient k
9
 is the dimension [Pa*s2], the characteristics of the materials with this dimension in modern mechanics

of deformable bodies no. These features give reason to exclude it from the balance (27), but they can play an
important role in dynamic processes and for accounting for viscous properties, including in the case of reversible
deformation.

Difficulties in interpreting the summand with the invariant î
9
 lead to a logical replacement of mathematical

images of some invariants, without distorting their meaning and the basic concept of energy (7). An additional
argument for the possibility of such a replacement can be the previously used transition from the velocity modulus
(3) to its square for kinetic energy. Now the situation is reversed, there are reasons to accept the quadratic
invariant of the deviator instead of (33)

9  2 2 2 2 2 2 2 2 2 1/2[( ) ( ) ( ) ]t t t t t t t t t t t tH x y y z z x x x ó ó z z                       (37)

The above considerations, including the possibility of using the theory of plastic flow (34) and the calculation
of the deformation power (35), remain valid, but the final expression for the corresponding local energy invariant
takes the form instead of (36)

9 9 9 0 9 0 9 0( / ) dE k V k H V k T V         (38)

The dimension of k
9
 for the modified invariant (37) coincides with the dimension of the proportionality coefficient

of the theory of plastic flow ë [Pa*s], which can be determined experimentally[21].
The logic of the proposed transition from (33) to (37) becomes clearer if we additionally replace the expression

of invariant 10 , pi tx    given in block (4) with a close-meaning derivative of the invariant 7 R 

10 7, 0( / )t t tR V V      10 10 10 0 10 0tE k V k R V      (39)
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In this case, the terms with the invariants î
9
 and î

10
 do not characterize States, but a process, and it is

possible to combine them in the energy balance (27), as mutually complementary in the transitions of the energy
of shape change (invariant î

9
) to the energy of volume change (invariant î

10
) mentioned in classical mechanics of

a deformable solid.
The quadratic invariant î

6
 can be represented as a sum of summands[9,10]

2 2 2 2 2 2 2 2 2 2 2
6 ... 3ex x x ó z e e e e                   (40)

In the right part, the squares of the ratio of the edge lengths before äl
0
 and after äl are used, initially oriented

in the direction of the corresponding axes
2222

0
2 )/( ppppp zyxlle   , ),,( p

average value of the ratio of edge lengths e
p
 ,

3/)(  eeee 

and the standard deviation of the relative edge lengths e
p
 from the average value e

2 2 2 2( ) ( ) ( )Ã e e e e e e       

The structure of the formula (40) allows the transition of part of the elastic energy from one form 3e2 to
another Ã2 without changing the invariant î

6
. Transitions are not restricted by any other conditions and are reversible.

They are realized in reality at free fluctuations[13,14] without the participation of external energy sources.
The possibility of energy transition associated with the invariants î

9
 and î

10
 has a different nature. The parts

of energy that have passed from one type to another are reflected at each moment of time or after the completion
of the process in equations of type (7) and (8) in terms with other invariants (î

6
, î

12
, î

13
). The peculiarity of the

process is that î
9
 is always positive, and î

10
 can have any sign. If the sum of local energies (38) and (39) is equal

to 0, the process can proceed spontaneously, but only with a decrease in the volume of particles (for H>0, R
t
>0,

the sum will not be equal to 0).

In particular, for linear stretching with equations of motion (26) at values (up to ,x t )

2 1/2
, (1 2 )x tH     ,(1 2 )t x tR    

from the condition 9 10 0tk H k R   we get

2 1/2 2 1/2
9 10/ / (1 2 ) / (1 2 ) (2 1) / (1 2 )tk k R H           

Since the scalar properties are positive, the Poisson coefficient ì must be greater than 0.5. This is consistent
with the example given in[9] of irreversible deformation under linear tension, when the second phase of deformation
with the volume returning to the original value is possible only at µ > 0.5.

The invariant î12 essentially coincides with the concept of accumulated strain used in classical mechanics
(the Odquist hardening parameter)[19]

12
0

t

Hdt    (41)

where the intensity of the strain rate H determines the equation (37). The parameter Ë characterizes the hardening
of the material and the degree of use of its plastic properties (in the initial state Ë = 0). Separately, we note that

for integration in the right part (41), the equations of motion (1) must be written in the form of Lagrange, since the
accumulated deformation should not be determined for a fixed point in the observer�s space (Euler), but for a

fixed particle of the medium.
Difference between accumulated deformation (41) and effective

2 2 2 2 2 2 2 2 2 2 1/2( 3)å åÃ Ã x x x ó ó ó z z z                   (42)
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it consists in the fact that the Ã
e
 can increase and decrease over time, while the accumulated strain Ë, by analogy

with the path î
4
, always increases, regardless of the type of loading trajectory.

Processes for which the Odquist parameter Ë coincides with the effective strain (42) are called monotonic[21].
Typically, such deformations occur under the action of a single external force, such as linear tension, simple shear,
or torsion, when all deformations increase in proportion to a single parameter. In this case, the loading trajectory
in the deformation space has the form of a straight line connecting the initial and final States (movement along the
shortest path). In all other cases, Ë > Ã

e 
and the more complex the deformation path, the greater the difference

between Ëand Ã
e
.

Like the invariant î
4
, an additional operator Ä must be used to increment the energy of the particle corresponding

to the invariant î
12

12 12 12 0 12 0 12 0E k V k V Hdt k V        (43)

The operator Ä in the right part of the equation is not necessary, since by definition the accumulated deformation
Ë in the initial state is equal to 0.

The unified curve hypothesis of classical mechanics[19] assumes the replacement of a constant coefficient G
(modulus of shift) in the condition of proportionality of stress and strain deviators for an elastic region with a
positive function g(Ë), called the modulus of plasticity[21]. An analog of the unified curve hypothesis in the space
of Lagrange variables is the relations

0

, 0

( )
p

pi pi y

i pi

T
g

x e y Ã



 

   
   



According to the unified curve hypothesis[19], the product ( )T g Ã   determines the stress intensity T, which

coincides with the quadratic invariant of the stress deviator. Then the local energy associated with the k
12

 property

in the region of irreversible plastic deformations 12 0/E V   corresponds to an increment of the volume energy

density due to the accumulated deformation Ë in comparison with the initial state. Equation (43) takes the form

12 0 12 12 12/ ( )E V k k g      

For models of ideal plasticity, linear and power-law isotropic hardening, the expressions are used instead of
the coefficient k

12
, respectively

12 ( ) Tk g const    12 ( )k g C    12 ( ) nk g C    (44)

For the elastic region of deformation Ã  , we obtain Hooke�s law for the shear T=GÃ (G is the shear
modulus, Ã is the shear strain intensity). In the plastic region, the constant C should be determined based on
experimental studies, usually by the curves of hardening under linear tension beyond the elastic limit[21].

Replacing the invariant î
10

 with R
t
 changes the invariant î

13

13 0 0
0

d 1 / 1 / 3
t

tR t R V V V V            

which coincides with the relative change in the volume of the particle 3å in magnitude and sign. Thus, the term

13E  in equation (7) will take into account instead of the invariant î
7
 the increment of energy that characterizes

the current value of the particle volume in comparison with the initial state

13 13 13 0 13 03E k V k V      

If we take the coefficient k
13

 equal to the modulus of bulk elasticity of the material K, then 13 0/E V   we

determine the average Cauchy stress, which in the energy model of mechanics corresponds to the increment of
the average stress in the current state compared to the initial one 0 62k  , which follows from equation (16) for
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the new scale of average stresses. This is the meaning given to the average Cauchy stress by the analogy of the
laws of elastic volume change and Boyle-Marriott used above. It is also noted that from the analogy of laws, as

well as in meaning 13 0/E V  , the volume elasticity modulus K should be considered as the actual pressure acting

in the material. In addition, we note that 13 0/E V   it acquires the sign å, increases with increasing volume, and

decreases otherwise. This effect, which does not agree with the usual representation of classical mechanics, was
noted in[13] various signs of changes in the volume of body particles during longitudinal free vibrations did not
require additional energy from external influences, if the total volume of the body remains unchanged if the total
volume of the body.This confirms the possibility of classifying the volume elasticity modulus as a physical property
k13 = K (45)

but, unfortunately, without a base multiplier.

TEMPERATURE EFFECTS IN DEFORMATION PROCESSES

As noted above, energy is invariant with respect to the type of external influences. Gravitational and mechanical
are considered above, and we will focus on the possible temperature effects in the deformation processes.

Dissipation, accompanied by thermal effects with the loss of part of the energy through the heat generated,
leads to the irreversibility of the processes and, therefore, can only occur in a plastic state. But the temperature
increase due to external sources can occur in both elastic and plastic areas.

To take into account the thermal effects, it is necessary to Supplement the energy balance (27) with a new
term related to external influences, in the form of heat flow ù

T

0 1 1, 2 2, 4 4, 6 6, 9 9, 10 10, 12 12, 13 13,( ) 0t t t t t t t t e Td Å V k k k k k k k k dt                     (46)

which for the considered particle can be represented as

0 0 0 0 0d (d ) /T T tE t V c dT dt c T       

where c
0
, ñ

0
, T are the heat capacity, density, and temperature, respectively.

First, consider the case when the particle is in its original undeformed state. For an isotropic material, the
thermal energy coming from external sources leads to a homogeneous expansion with the equations of motion[9,18]

(1 )i i Tx T   1 Tx T    (47)

where áÒ is the coefficient of linear expansion, with an increment of the particle�s energy

0 0 0/Td E V c dT    (48)

For homogeneous deformation, the invariants of the equations (47) included in the energy balance (46)
determine the equations

2
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Change in volume energy density
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taking into account the increment of invariants up to dT is

0 6 13 12 9 10/ [ ( )(6 3 ) 3 ] | | ( 3 3 )T T td Å V sign dT k k k dT k k dT         (49)

Earlier, when discussing the local energy (38) and (39) with the invariants î
9
 and î

10
, it was noted that the

energy of changing the shape of äE
9
 can be converted into the energy of changing the volume of äE

10
, with

subsequent adjustment of other types of energy included in the energy balance. With uniform heating, both
invariants î

9
 and î

10
 increase and the mentioned transition is impossible. The sum of the terms däE

9
 and däE

10
 will
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be 0 if only the second time derivative of temperature is 0. Excluding heat shock for the conditions under

consideration, which allows 0ttT  , for the energy balance (46) taking into account ó
0 
= 2k

6
, (45) and (48) we

obtain

0 0 0 12( )(3 3 / ) 3 0Tsign dT K c k      

Since the first term changes sign during heating and cooling, and the coefficient k12 cannot be negative, the
equality holds if only in the initial state k

12 
= 0. This corresponds to uniform heating, when there is no hardening,

for any law of hardening (44) k
12 

= 0 follows. The condition of the energy balance remains equal

0 0 0 /(3 )TK c     (50)

The terms in the left part were interpreted above as measures of the volume energy density of particles in the
initial state. It can be argued that both parts of this equality must be constants of materials. This is confirmed by
the Grueneisen law established based on experiments[21]. It is especially important that this equality, as well as the
properties (11), includes the base multiplier � the density of the material ñ

0
.

It is noted above that the properties of k
9
 and k

10
 can contribute to energy transitions with the condition being

met 9 10 0tk H k R  . For each process, the kinematic parameters involved in this equality can take independent
values: the intensity of the strain rate H characterizes the shape change, and the time derivative of the Jacobian R

t

� the volume change. It is interesting to note that under hydrostatic loading, when H = 0 and 0tR  , the transition

of the energy of volume change to the energy of shape change is excluded, the condition 9 10 0tk H k R   is not
fulfilled. When thermal effects occur the mentioned equality must be supplemented with a summand

9 10 0 0tk H k R c T     (51)

which determines the dissipated part of the energy and removes restrictions on the ratio of properties k
9
 and k

10
.

Equation (51) assumes that a similar term 0 0T td E c T V dt     should be included in equation (46), since temperature
becomes a new parameter of the energy state of particles, which is not provided for in the equations of motion (1).

Taking the intensity of the shear strain rate (37) as the invariant î
9
, and the dissipative function (34) as the

coefficient k
9
, the energy condition for the transition of the strain energy to temperature takes the form

10 0 0å tk R c T     

It can be argued that the energy 10 10 0tE k R V    released by a particle when its volume changes can be spent

either on increasing the stress intensity to a value 10| |å tk R   without changing the temperature of the particle

( 0T  ), if å s   , or on increasing the temperature ( 0T  ), if the stress intensity has reached the limit value

å s   .
In General, when thermal effects may occur during deformation due to external or internal sources, the

energy balance should be considered in the form (46) with an additional term 0 0T td E c T V dt    . Included in the
right part, the invariants must take into account the actual deformed state of the particle.

DISCUSSION AND CONCLUSIONS

The energy model does not contradict classical mechanics and brings clarity to the understanding of the basic
laws associated with motion. As the experience of solving various problems shows[13-18], the transition to a new
scale of average stresses and one modulus of elasticity reduces mathematical difficulties and allows us to obtain
new results, including on the features of the energy state of particles and the body as a whole.

The above mentioned physical property ratios 2k
6
=3K, 

0
 = 2k

6
. Equation (50) allows us to obtain concrete

results using the density of the material, which, as noted in section. 2, is mandatory for all scalar coefficients
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included in the right part of equation (7). For the volume elasticity modulus K, the calculated data can be compared
with the table data[18,23], if we go to the energy scale of specific heat in equation (50) and take 

0
 = 0[9], then

0 0 / (3 )TK c  

The results (TABLE 1) have the same order, the ratio depends on the type of material. The reason for
deviations may be the frequently used calculation of the volume elasticity modulus K through young�s modules E
or the shear G using the Poisson�s ratio (for example, for lead in TABLE 1[18]). Additional properties may play a
significant role. The greatest differences were observed for metals with aFCC lattice.

TABLE 1

For the coefficient k
12

 in classical mechanics, there are 3 versions of the formulas (44), taking into account the
features of hardening[19,20]. In the new mean stress reference system, 2k

6
 can be adopted instead of C, which

allows the base factor to be included in this physical property, for example, for power hardening

12 6 0 02 ( / )n n
Tk k c     

where Ë should be determined by the methods known in classical mechanics for calculating the accumulated
strain. In this case, k

12
 is not a constant, but there is no such requirement in equation (7). The coefficient of friction

in the property k
4
 is also not a constant. It is possible that the coefficient k

12
 will require an adjustment that takes

into account the dependence of the heat capacity on temperature and deformation.
The need to take into account the sign of the terms in equation (49) allows us to assert that the successive

alternation of heating and cooling, as well as stretching and compression, cannot be considered reversible processes.
They can lead to changes in the properties of materials identified with coefficients k

12
, k

13
. An example is the

Bauschinger effect[19,20], which is manifested in increasing the yield strength of a material due to pre-deformation
of the opposite sign.

It was noted above that the properties of k
9
 and k

10
 can contribute to energy transitions with the condition

being met 9 10 0tk H k R  . For each process, the kinematic parameters involved in this equality can take independent
values: the intensity of the strain rate H characterizes the shape change, and the time derivative of the Jacobian R

t

� the volume change. It is interesting to note that under hydrostatic loading, when Í = 0 and 0tR  , the transition
of the energy of volume change to the energy of shape change is excluded, the condition is not fulfilled. When
thermal effects occur the mentioned equality must be supplemented with a summand

9 10 0 0tk H k R c T     (51)

which determines the dissipated part of the energy and removes restrictions on the ratio of properties k
9
 and k

10
.

Equation (51) suggests that a similar term 0 0T td E c T V dt     should be included in equation (46), since
temperature becomes a new parameter of the energy state of particles, which is not provided for in the equations
of motion (1). Additional research is needed to make final decisions on these properties.

FCC � face-centered cubic lattice, BCC � body-centered cubic lattice, HCC � hexagonal compact crystal lattice

Metal Gridtype 
Density 
ñ0 

Heat capacity 
c0  

Linear exp.coef 
áÒ  

k6 = 
c0ñ0  / (2T) 

Kcalc 
c0ñ0 / (3T) 

Ktabl[18] Ktabl/Kcalc 

  kg/m3 N*ì/kg*C 1/o C*106 GPa GPa GPa 1 

Aluminum FCC 2700 870 23,9 49,14 32,76 75,8 2,31 

Copper FCC 8960 383 16,5 103,99 69,33 137,6 1,98 

Titanium HCC 4500 520 8,5 137,65 91,76 107 1,16 

Nickel FCC 8900 443 13,3 148,22 98,81 161 1,63 

Lead FCC 11300 128 29,3 24,68 16,45 46 2,80 

Zinc HCC 7100 385 15 91,12 60,74 60 0,99 

Iron BCC 7900 483 11,7 163,06 108,71 169 1,55 
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As a result, in equation (7), the energy state of a particle is determined only by 3 physical properties of the
material: the density ñ

0
, the heat capacity c

0
, and the linear expansion coefficient á

T
 (or volumetric compression

coefficient 
T
 =3á

T
) of the material. Moreover, the basic density is that which determines the kinetic energy of the

particle ( 2 0 / 2k  ). In other coefficients, the density should be considered as the main factor, and all the others

� as additional characteristics of the considered type of local energy. In particular, 1 0k g  it characterizes the
features of the medium in which the movement occurs (gravitational, magnetic, electric fields or their absence, as

in the case of spring deformation). The coefficient 4 0 frk gf   assumes the energy consumption at the contact of
two bodies, the coefficient of friction f

fr
 can take into account the ratio of the properties of the materials of these

bodies. When absolutely solid bodies are moving, it is possible to change 4 types of energy, characterized by
coefficients k

1
, k

2
, k

4
 and losses on heating (dissipation) by analogy with equation (51).

For a model with a single modulus of elasticity, if we take k
7
=0, the energy state of the particles is determined

by coefficients k
6
, k

13
, which differ from the average stress in the initial state of the particle 0 0 0 / Tc     only by

numerical coefficients

6 0 0 0/ 2 / (2 )Tk c    ,  
13 0 0 0/ 3 /(3 )Tk K c    

The coefficients k
9
 and k

10
 are not specified, they do not affect the energy state of the particles, and they only

determine energy transitions associated with changes in shape, volume, and dissipation according to equation (51).
The use of a single elastic modulus k

6
 in the field of reversible deformations allows ambiguous combinations

of mean deformations e and standard deviation Ã at a fixed value of elastic deformation 2
e  (40). The system can

accept various configurations without additional external influences, including those with extreme values of e and
Ã. the Possibility of spontaneous transition of the energy of shape change to the energy of volume change (with or
without dissipation) is justified when analyzing the components of the local energy of particles with invariants î

9

and î
10

. This allows us to propose a mechanism for the transition to irreversible deformations in the form of a
cyclic process with the accumulation of elastic energy in the first phase, usually with an increase in the volume of
the particle, and the dissipation of excess energy in the second phase of the cycle with the return of the particle
volume to its original value[9].

The valve that starts the process of converting a reversible deformation into an irreversible one is located in
the term äE

13
. According to equation (51), dissipation (T

t
>0) is only possible when the volume of R

t
<0 decreases,

since H>0. The resulting strain rate intensity H is integrated into the accumulated strain Ë with the result displayed
in the summand äE

12
.

The key to actuating the valve can be an increase in the standard deviation Ã, allowed in the elastic state by
the invariant (40). As follows from equation (52), for positive by definition e and Ã, an increase in the standard
deviation Ã

t
>0 leads to a negative value e

t
< 0 and, accordingly, a decrease in the volume R

t
< 0.

The stress level ó
k
 according to equation (16) and the value R

k
 at which the valve is triggered determine the

new value of the average stress ó
0
 + ó

k
 = ó

0k
 instead of the previous ó

0
, which determines the new level of

volumetric energy density and hardening with the possible manifestation of the Bauschinger effect.
According to the existing terminology, the k

12
 property should be referred to as mechanical, as it contains, in

addition to physical properties, an additional multiplier, and characterizes the resistance to external loads. Explicitly,
the Poisson coefficient, Young�s modules E and shift G are not included in the physical properties according to
the energy model of mechanics.

In total, 8 coefficients of the equation (7) contain only 3 physical properties (TABLE 2).

TABLE 2

k1 k2 k4 k6 k7 k12  k1 3 

ñ0 g ñ0/2 ñ0ffr c0ñ0 / (2T) 0 (c0ñ0  / T)
n (c0ñ0 / (3T) 
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Taking into account the initial values of the invariants (all but k
6
 are equal to 0), in the initial state, the volume

and mass energy densities are

0 0 6 0 0 0/ 3 1,5 3 / (2 )TE V k c        0 0/ 1,5 / TE m c   

The specification of physical properties included as scalar coefficients in the main energy equations does not
affect the General relations described in[9,18]. The equations of motion in both elastic and plastic regions must
satisfy the General differential equation (19), which is transformed for a model with a single elastic modulus k

6
 to

the form (21). They are used in the study of energy features of free vibrations[13] and resonance[14].

CONCLUSIONS

Only 3 physical properties (density, heat capacity, and linear expansion coefficient) determine the behavior of
materials (elastic modulus) and the energy state of particles under reversible deformations. In the field of irreversible
deformations, the dependence between the quadratic invariants of stress tensors and strain rates according to the
theory of plastic flow of classical mechanics of a deformable solid plays a determining role. The results obtained
can be used in selecting criteria for the development of new materials and technologies for their processing. These
criteria should take into account the dependence of density, heat capacity, and volume compression on temperature
and strain.
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