

EXPLORATORY Science Research

Original Research Article

EESR, 2(1) 2021 [87-94]

The analyses of mapping tightly linked markers of a single dominant heat-tolerance gene in indica variety, TCS17

Ching-Chu Yen 1,2

¹**Yun-Lin County Dounan Senior High School, (TAIWAN) ²No.212,ZhongshanRd., DounanTownship,YunlinCounty 63044,(TAIWAN) E-mail: ye0919@ms21.hinet.net <https://dx.doi.org/10.47204/EESR.2.1.2021.087-094>**

In the past three decades, global warming has led to an increase in annual average temperature. This high temperature stress is
a serious threat to the growth and yield in rice. Therefore, scientists study hard to find hea In the past three decades, global warming has led to an increase in annual average temperature. This high temperature stress is tolerance rice lines. Ten years ago, a 100%-explaintion heat-tolerance gene was discovered in my salt-tolerance research on screening, inheritance and linkage marker analyses of salt tolerance in mutated scented japonica rice, to develop elite salttolerant varieties suitable for salinized areas **[24,25]**. In view of this, I began the first analysis of mapping tightly linked markers of a single dominant heat-tolerance gene in indica variety, TCS17, explaining 100% of the phenotypic variation. I reported the results of this heat-tolerance gene analysis, hoping to help scientists to find salt-tolerant genes and cultivate salt-tolerant strains. The analyses can solve the problem of high temperature stress in rice and help humans deal with future food shortages. Yen (2011) and Yen and Lin (2011) treated the seedlings of 1005 mutated scented japonica rice lines with six true leaves with 300 mM NaCl for three days. Only the salt-tolerant line, SM61, survived. We obtained F_2 populations from the cross between a salttolerant and heat-susceptible japonica line, SM61, and a salt-susceptible and heat-tolerant indica variety, TCS17. After culture mM NaCl for three days. Only the salt-tolerant line, SM61, survived. We obtained F_2 populations from the cross between a salt-
tolerant and heat-susceptible japonica line, SM61, and a salt-susceptible and heat-tolerant salt-sensitive non-surviving (S) ratio in 290 F₂ plants showed a good fit to the Mendelian 3 : 13 segregation ratio by a Chi-square test indicating that the heat-tolerance of TCS17 was governed by a single dominant gene. The heat-tolerance gene explained close to 100% of the total phenotypic variation, and was tightly linked to C61009 (marker) located on chromosome 4. This is the first report of mapping tightly linked markers of a single dominant heat-tolerance gene. These linkage markers can efficiently
provide the fine mapping, cloning and sequence comparison, as well as the functions of the new provide the fine mapping, cloning and sequence comparison, as well asthe functions of the new heat-tolerance gene, answering

KEYWORDS

loci (QTLs); Salt tolerance; Inheritance; Mutated; *Oryza sativa*; Quantitative trait loci (QTLs); Salt tolerance; Heat tolerance; Scented; Seedling stage.

INTRODUCTION

Rice feeds more than half of the world 's population. However, in the increase of average temperature due to global warming, rice is suffering from high temperature stress, resulting in threats to the decrese of the growth and yield in rice. Next to drought and salinity stress, heat stress is the third abiotic threat to rice production and quality. Therefore, scientists around the world are actively searching for heat-tolerance genes and breeding heat-tolerance rice strains **[1,5,15]**. In previous studies **[7,13,15,21-23,26,27]**, the location of QTLs for heat

tolerance in rice was examined by using molecular markers. Zhu et al. (2005) found three QTLs involved in controlling heat tolerance of rice during grain filling on chromosomes 1, 4 and 7. Ye et al. (2011) mapped two major heat tolerance QTLs, qHTSF1.1 and qHTSF4.1 in relation to spikelet fertility at the flowering stage on chromosomes 1 and 4. Ye et al. (2015) and Ye et al. (2015) performed the identifying, confirming, fine-mapping and validating of qHTSF4.1 to increase spikelet fertility under heat stress at flowering in rice.
Zhao et al. (2016) found eleven related QTLs were detected, two QTLs for spikelet fertility on chromosomes 2 and 4, four QTLs for daily flowering time on chromosomes 3, 8, 10 and 11, and the other five forspikelet fertility and pollen shedding level on chromosomes 1, 4, 5, 7 and 10, respectively. Shanmugavadivel et al. (2017) identified five QTLs involved in stress susceptibility and stress tolerance indices (SSI and STI) of percent spikelet sterility and yield per plant on chromosomes 3, 5, 9 and 12. Kilasi et al. (2018) identified fifteen related QTLs were detected, one QTL for root length under heat stress on chromosome 5, four QTLs for root length under heat stress as percent of control on chromosomes 1,2, 3 and 4, three QTLs for shoot length under heat stress on chromosomes 3, 4 and 6, and the other seven for shoot length under heat stress expressed as percentage of control on chromosomes 2, 3, 4, 5, 6 and 10, respectively. Nubankoh et al. (2020) detected QTLs for spikelet fertility under heat stress on chromosomes 1, 2 and 3 in rice. Most QTLs related to heat-tolerance were located in a similar region on chromosome 4 **[7,21- 23,26,27]**. Identification of new QTLs related to heat tolerance through marker-assisted selection (MAS) should be useful in rice heat-tolerant breeding programs **[7,13,15,21-23,26,27]**.

japonica line, SM61. The results will help begin map- witl **EXAMPLE 1.5** Interest The results will help begin map-
of the single dominant heat-tolerance me
late the mechanism controlling the heat-
ENVIRONMENTAL SCIENCE RESEARCH markers and heritage characters of the indica variety, TCS17, for a single dominant heat-tolerance gene by using F_2 populations derived from a cross between a at a mean temperature of 35/25 °C (day/night). At the heat-tolerant and salt-susceptible indica variety, TCS17, and a heat-susceptible and salt-tolerant based cloning of the single dominant heat-tolerance mediu gene and elucidate the mechanism controlling the heat-

tolerance gene, and will be useful in breeding programs of heat tolerance in rice.

MATERIALSAND METHODS

Plant materials

Yen (2011) and Yen and Lin (2011) performed the experiments on screening of salt tolerance in 1005 mutated scented japonica lines originated from the wildtype japonica cultivar,TNG67 **[4]**.TNG67 wastreated with a chemical mutagen, NaN_3 to produce the steady genetic line of mutated scented rice, CNY911303. Then, CNY911303 was treated with EMS to produce the second generation of 1005 mutated lines that developed to the sixth generation with superfine agronomic traits in the first season of 2006^[20]. These 1005 lines, at the three true leaf growth stage, growing in the National Chung Hsing University glasshouse were treated with 150 mM NaCl for three weeks. According to the procedure of Verma et al. (2007), 11 salt-tolerant lines were selected, grown and developed to the seventh generation.All 13 lines, including the 11 selected lines, CNY911303, and TNG67 seedlings with six true leaves, were treated with 300 mM NaCl for three days CNY911303, and TNG67 seedlings with six true
leaves, were treated with 300 mM NaCl for three days
at a mean temperature of $30/20^{\circ}$ C (day/night)^[14]. at a mean temperature of $30/20^{\circ}$ C (day/night)^[14]. SM61, was the only surviving line which produced seeds. Thissalt-tolerant and heat-susceptible japonica line, SM61, was hybridized with a salt-susceptible and heattolerant indica variety, TCS17, and $F₁$ seeds were produced in the second season of 2007 **[8,10,24,25]**. The F_1 plants were self-fertilized to develop the F_2 seeds in the first season of 2008.

Linkage analysis of heat-tolerant plants

grams.
The purpose of this study was to analyze linkage $\frac{(SM61\times TCS17)}{median \text{ in a plastic tray} (60\times 48\times 16 \text{ cm}) \text{ under non-} }$ Yen (2011) and Yen and Lin (2011) performed the experiments on linkage analysis, 290 $F₂$ plants Yen (2011) and Yen and Lin (2011) performed the
experiments on linkage analysis, 290 F_2 plants
(SM61×TCS17) were cultured in a hydroponic culture experiments on linkage analysis, 290 F_2 plants
(SM61×TCS17) were cultured in a hydroponic culture
medium in a plastic tray (60 × 48 × 16 cm) under nonshaded conditions at National Taiwan University during
July and August in 2008. The seedlings were cultured
at a mean temperature of 35/25°C (day/night). At the July andAugust in 2008.The seedlings were cultured four true leaf stage, the F_2 plants were cut at about the 5 cm leaf level and DNA was extracted. The plants with six true leaves were grown in a hydroponic culture medium supplemented with 200 mM NaCl for five days. After the five-day culture, the 290 $F₂$ plants were

transferred to the hydroponic culture medium without NaCl. 52 F_2 heat-salt-tolerant surviving plants were selected. TNG67 was heat-susceptible and salt susceptible, SM61 was heat-susceptible and salttolerant, while TCS17 was heat-tolerant and salt susceptible^[8,10,24,25]. Among the 52 F_2 heat-salt-tolerant surviving plants, 46 plants were screened for gene in SM61 and the heat-tolerant gene in TCS17.

The 46 selected F_2 heat-salt-tolerant plants were used to construct a linkage map. The primer sequence designs of the SSR marker, STS marker and Indel marker, belonging to PCR markers, were carried out on the basis of the information offered by Harushima et al. (1998), Lin et al. (1998), Temnykh et al. (2001), McCouch et al. (2002), Shen et al. (2004), Lin et al. (2008). In total, 106 SSR markers, STS markers and Indel markers were discovered.All markers covered the entire rice genome, which revealed polymorphisms between the parents, SM61 and TCS17, which are represented byAand B, respectively, and were used to determine the genotypes of the selected F_2 heat-salttolerant plants. The map spanning between the two markers was around 20 centiMorgans (cM). We used Microsoft Excel 2000 software to calculate the genotypic frequency distributions of the F_2 heat-salttolerant plants.

Inheritance analysis of heat tolerance

To confirm that the gene controlling heat-tolerance in TCS17 was a single dominant gene, I performed the inheritance analysis. In Yen (2011) and Yen and Lin (2011)'s experiments on linkage analysis, the 290 $F₂$ inheritance analysis. In Yen (2011) and Yen and Lin
(2011)'s experiments on linkage analysis, the 290 F_2 the tot
plants (SM61×TCS17) were grown in a hydroponic culture medium supplemented with 200 mM NaCl at a plants (SM61×TCS17) were grown in a hydroponic
culture medium supplemented with 200 mM NaCl at a
mean temperature of $35/25^{\circ}$ C (day/night) for five days mean temperature of $35/25^{\circ}$ C (day/night) for five days
(60 × 48 × 16 cm container). TCS17 was heat-tolerant and salt-susceptible whileSM61 was heat-susceptible and salt-tolerant^[8,10,24,25]. After the five-day culture, the To 290 F_{2} plants were transferred to the hydroponic culture medium without NaCl. After one week, their heator salt-sensitive non-surviving (S) frequency distribution was calculated. The R to S ratio of F_2 populations were analyzed to fit a Mendelian 1 : 3 or 3 : 13 segregation ratio using a Chi-square test from SAS software.

Original Research Article RESULTSAND DISCUSSION

Results

Linkage analysis of a heat-tolerance gene

constructing the linkage markers map of the salt-tolerant
of $35/25^{\circ}$ C (day/night) for five days under non-shaded
consiner $\frac{1}{2}$ and the heat televant gaps in $TGS17$ In Yen (2011) and Yen and Lin (2011) 's experiments **Linkage analysis of a heat-tolerance gene**
In Yen (2011) and Yen and Lin (2011)'s experiments
on linkage analysis, the 290 F_2 (SM61×TCS17) plants were treated with 200 mM NaCl at a mean temperature on linkage analysis, the 290 F_2 (SM61×TCS17) plants
were treated with 200 mM NaCl at a mean temperature
of 35/25°C (day/night) for five days under non-shaded conditions at National Taiwan University during July and August in 2008. After the five-day culture, the 290 F_2 plants were transferred to the hydroponic culture medium without NaCl. The 52 salt-tolerant and heattolerant plants developed newleaves and roots quickly while the salt-sensitive or heat-sensitive plants did not survive. We screened 46 of the 52 F_2 heat-salt-tolerant surviving plants to map the salt-tolerant gene in SM61 and the heat-tolerant gene in TCS17. The genotypes of TNG67, TCS17, and heterozygote are represented $by A, B, and H, respectively. The A, H and B genotypic$ frequency of the C61009 marker (8.7 cM) was $(0, 20)$, and 26, respectively (TABLE 1) (Figure 1). I predicted that, the H and B genotypic percentage of the $C61009$ marker occupied 100 % of chromosome 4, the heattolerance of TCS17 was governed by a single dominant gene. Based on the linkage correlation between the heattolerant marker genotypes and phenotypes, the phenotypic variance in the $F₂$ plants was explained by the C61009 marker on chromosome 4. Since 290 F_2 rice seedlings were treated with 200 mM NaCl for five days at ^a mean temperature of 35/25°C (day/night), the heat-tolerance gene explained close to 100% of the total phenotypic variation, and was tightly linked to C61009 (marker)located on chromosome 4.Thus, the heat-tolerance gene, *HT4*, which conferred the heat tolerance of TCS17 was mapped on chromosome 4 flanked C61009 marker.

Inheritance analysis of heat tolerance in TCS17

did not (S). The R to S ratio in 513 F_2 plants showed a **EXECUTE 15 IS A FORMORED STATE:** FOR THE PRODUCTION TO DETERMINE THE PRIME PRIMED SCIENCE **RESEARCH**
 ENVIRONMENTAL SCIENCE RESEARCH tolerant and salt-tolerant surviving (R) and heat-sensitive $(day/night)$ for five days, SM61 and F₁ (SM61×TCS17; To exclude heat stress, in Yen (2011) and Yen and Inheritance analysis of heat tolerance in TCS17
To exclude heat stress, in Yen (2011) and Yen and
Lin (2011)'s experiments on inheritance, with 200 mM To exclude heat stress, in Yen (2011) and Yen and
Lin (2011)'s experiments on inheritance, with 200 mM
NaCl in a net-house at a mean temperature of 30/20°C Lin (2011)'s experiments on inheritance, with 200 mM
NaCl in a net-house at a mean temperature of 30/20°C
(day/night) for five days, SM61 and F_1 (SM61×TCS17; NaCl in a net-house at a mean temperature of $30/20^{\circ}$ C
(day/night) for five days, SM61 and F₁ (SM61×TCS17;
TCS17×SM61) plants survived (R) while TCS17 plants good fit to the Mendelian 3 : 1 segregation ratio by a Chi-square test indicating that the salt-tolerance of

SM61 was governed by a single dominant gene.

Since Yen (2011) and Yen and Lin (2011) indicated that the salt-tolerance of SM61 was governed by a single dominant gene, we needed to use salt-sensitive non survivals to map the linkage markers of the salt-tolerance gene in SM61. However, in Yen (2011) and Yen and Lin (2011)'s experiments on linkage analysis, the 290 F_2 plants were cultured under non-shaded conditions Lin (2011)'s experiments on linkage analysis, the 290
F₂ plants were cultured under non-shaded conditions
at a high mean temperature of $35/25^{\circ}C$ (day/night) during July and August. The screened environment under the salt-stress and heat-stress conditions at National Taiwan University in the hottest season produced a majority of dead plants preventing the selection of saltsensitive non-survivals for mapping. Therefore, the only 52 heat-salt-tolerant F_2 plants survived. Among the 52 $F₂$ surviving plants, we selected 46 survival plants to perform the mapping. The performance in each the F_2 the 46 salt-tolerant F_2 plants were homozygote dominant (A), not heterozygote dominant (H). The number of genotype A of the RM223 marker (75.7 cM) in the 46 $F₂$ salt-tolerant surviving plants were 46 (100%) in the 46 F , plants was governed by a homozygote dominant allele, the salt-tolerance gene in SM61 might be semidominant.

semidominant salt-tolerant allele. Morever, the A, H and $\frac{8}{8}$ EXECT: EXECT without NaCl for one week, the number of R and S plants were 52 and 238, respectively. The heat-tolerance gene, *HT4*, which conferred the heat tolerance of TCS17 was mapped on chromosome 4 flanked C61009 marker; the salt-tolerance gene, *ST8*, which conferred the salt tolerance of SM61 was mapped on chromosome 8 flanked RM223 marker. These two genes were located on diffreent chromosomes.TheR to S ratios of the F_2 population fitted a Mendelian 3 : $\frac{1}{4}$ genes were located on diffreent chromosomes. The R
to S ratios of the F_2 population fitted a Mendelian 3 :
13 segregation ratio by the Chi-square test, but didn't fit a $1:3$ segregation ratio (TABLE 2). The results indicated that R (the 52 heat-salt-tolerant F_2 survival rice plants) was governed by a single dominant heattolerant gene and a homozygote-semidominant salttolerant allele, not only governed by a homozygote- B genotypic frequency of the C61009 marker (8.7 cM) $\frac{1}{\text{Tho}}$ was 0 , 20 , and 26 , respectively. The H and B genotypic

percentage of theC61009 marker occupied 100 % of chromosome 4 (TABLE1)(Figure 1).I predicted that, since the inheritance and linkage marker analyses of heat tolerance in TCS17, the heat-tolerance of TCS17 was governed bya single dominant gene.

Discussion

heat-salt-tolerant plants proved that the genotypes of and Yen and Lin (2011)'s experiments on screening and (TABLE 1). We predicted that, since the salt-tolerance a mean temperature of 30/20 \degree C (day/night). However, Among 290 F₂ plants grown in the culture medium conditions at a high mean temperature of 35/25 °C (day/ Since during salt or drought screening in rice, high heat stress has to be excluded during dry and hot season, either heat sensitivity directly or raising tissue temperature by reducing transpiration under water deficit conditions indirectly **[1,6,24,25]**. Furthermore, the main mechanisms of salt tolerance in crops include: ion homeostasis, osmotic homeostasis, and control and repair of oxidative stress damage **[19]**. The high temperature tolerant indica variety, TCS17 tends to be more heat-tolerant than a high temperature sensitive japonica cultivar, TNG67^[8,10]. Morever, in Yen (2011) more heat-tolerant than a high temperature sensitive
japonica cultivar, TNG67^[8,10]. Morever, in Yen (2011)
and Yen and Lin (2011)'s experiments on screening and inheritance of salt tolerance, the 1005 mutated scented japonica rice lines **[20]** were originated from the wildtype japonica cultivar, TNG67^{14]}. Therefore, to exclude
high heat stress, we cultured the lines in a net-house at
a mean temperature of 30/20°C (day/night). However, high heat stress, we cultured the lines in a net-house at in Yen (2011) and Yen and Lin (2011) 's experiments on linkage analysis, the 290 F_2 plants were cultured
with 200 mM NaCl for five days under non-shaded
conditions at a high mean temperature of $35/25^{\circ}\text{C (day/}$ with 200 mM NaCl for five days under non-shaded night) during July and August. Under the salt-stress and

TABLE1:The genotypes of markersin 46 heat-salt-tolerant F² plants on chromosome 4 and chromosome 8.

Chr.	Location (cM)	Marker	A	H	B	N
4	8.7	C61009	Ω	20	26	- 0
4	28.6	SLS189	5	15	25	$\overline{1}$
4	77.9-78.2	RM252	16	16	14	Ω
4	87.1-94.4	RM303	12	20	14	Ω
4	108.2	S ₁ 37 ₁₄	10	23	13	Ω
8	0.5	RM337	10	22	14	Ω
8	21.6-25.2	SLS182	9	24	8	5
8	45.4	RM72	20	20	6	Ω
8	54.3	RM331	21	19	6	Ω
8	75.7	RM223	46	Ω	Ω	$\overline{0}$
8	92.2	SLS188	15	23	8	θ
8	105.7-106.1	CH0862	11	27	8	0

The genotypes of TNG67, TCS17, heterozygote, and non detection are represented by A, B, H, and N, respectively [24,25].

C61009 (8.7 cM) size: TNG67(A):210; TCS17(B):190

the second row

Figure 1: The genotypes of C61009 marker on chromosome 4 in the parents, TNG67 (A, the first row, lane 1) and TCS17 (B, the first row, lane 2), and the 46 heat-salt-tolerant F_2 rice plants (lane 3-24 of the first row and lane 1-24 of the second row)

heat-stress treatment, the only 52 salt-heat-tolerant F_2 plants survived. The H and B genotypic percentage of the C61009 marker occupied 100 % of chromosome 4 and theAgenotypic percentage oftheRM223marker

chromosomes. Chi-square values indicated that the F_2 **Example 3 Separate Science Englished Science Biology**
Environmental Science Research
ENVIRONMENTAL SCIENCE RESEARCH occupied 100 % of chromosome 8, which on different population had good fits to a Mendelian 3 : 13 segregation ratio for dominant heat-tolerant and

homozygote-dominant salt-tolerant (R) and recessive heat-sensitive or non-homozygote-dominant salt sensitive (S) traits. These results indicate that the heatgene. This is the first report that in F_2 heat-tolerant rice plants, the heat-tolerance is governed by a single dominant gene. By analyzing the inheritance of the single dominant heat-tolerance gene in TCS17, I can confirm the best method for analysis of the linkage markersin TCS17 for the heat-tolerance gene.

I analyzed the selected 46 F , heat-salt-tolerant plants to map the linkage markers of the heat-tolerance gene, $TCS17$. I found that the $TCS17$ heat-tolerance gene, *HT4*, is located on chromosome 4, different from those positions of previous QTL regions previously discovered on chromosome 4 **[7,21-23,26,27]**. By applying MAS techniques to the gene I have identified as responsible for conferring heat-tolerance, the results of my study could be used to improve heat tolerance in rice. Morever, the heat-tolerance in the $46 F₂$ plants was governed by a single dominant gene. Dominance would be helpful in the development of new elite varieties of plant that have a high-level of heat tolerance. Selected heat-tolerant lines like TCS17 and RIL will provide the new breeding sources for the production of heat-tolerant lines with superfine agronomic traits in the field.

TABLE 2: The frequency distribution of salt-tolerant and heat**tolerantsurvival(R) and salt-sensitive or heat-sensitive non survival(S)inF² populationevaluatedbyChi-squared values to fita Mendelian 1 : 3 segregation of a single homozygote dominantsalt-tolerant gene model, or a 3 : 13 segregation of a single homozygote-dominantsalt-tolerant gene and a single dominant heat-tolerant gene model.The rice plants atthe six true-leafstage were cultured in hydroponic culture medium containing ²⁰⁰ mM NaCl at ^a mean temperature of 35/25°C (day/night) for 5 days, and then transferred to a hydroponic culture mediumwithout NaCl and grown for one week.**

Explorationally and Explorationally Explorationally Explorationally State tolerant gene model, or 3 : 13 segregation of a single
 bomozygote-dominant salt-tolerant gene and a single dominant of h
 heat-tolerant 1) salt-tolerant and heat-tolerant survival rice plants; 2) salt sensitive or heat-sensitive unsurvival rice plants; ¹⁾ salt-tolerant and heat-tolerant survival rice plants; ²⁾ salt-
sensitive or heat-sensitive unsurvival rice plants; ³⁾ 290 F_2 rice bee
plants derived from the cross (SM61×TCS17); ⁴⁾ * represents suse **values to fita 1 : 3 segregation of a single homozygote-dominant homozygote-dominant salt-tolerant gene and a single dominant heat-tolerant gene model at P>0.05.**

tolerance of TCS17 was governed by a single dominant susceptible and salt-tolerant japonica parent, SM61 and Based on the mapping results, I presumed that the different location of the heat-tolerance gene, *HT4*, was obtained in $F₂$ generations derived from a heata heat-tolerant and salt-susceptible indica parent, TCS17. The materials in my study were different from those in the other reports investigating RIL and DH lines **[7,13,15,21-23,26,27]**since the latter derived froma cross between Nagina22, a well-known heat tolerant aus cultivar and $IR64$, a heat sensitive popular indica rice variety **[7,15,21-23]** or from a heat-tolerant indica parent, Habataki, and a heat-susceptible japonica parent, Sasanishiki^[26] or from a heat-tolerant parent, M9962, and a heat-susceptible parent, Sinlek **[13]**. To my knowledge, this is the first study using mapping materials originating from a heat-susceptible and salt-tolerant japonica line, and a heat-tolerant and salt-susceptible indica variety. The materials of screened heat-salttolerant F_2 plants (SM61×TCS17) resulted in my findings of a single dominant heat-tolerant gene in TCS17 and a homozygote-semidominantsalt-tolerant allele in SM61 simultaneously.

> The locations of QTLs of heat tolerance in rice have been reported **[7,13,15,21-23,26,27]**, but they did not refer to tightly linked markers for a single dominant heattolerance gene.In these reports, QTLs explained less than 30% of the total phenotypic variance for the heattolerance **[7,13,15,21-23,26,27]**, and most QTLs accounted for less than 20% of the heat-tolerance. My study was therefore the first to map for tightly linked markers of a single dominant heat-tolerance gene, explaining 100% of the phenotypic variation. Only when these four conditions exist could I have an opportunity to find a explaining 100% heat-tolerant gene^[1,2,6]: (1) Under the salt or drought stress, high temperature stress is added, the damage of high temperature stress will reach a high **2 P**⁴⁾ level. Therefore, it can be seen whether the plant is extremely heat-tolerant under the stress of salt or drought treatment with heat stress simultaneously. (2) The heattolerance properties of all heat-tolerance studies have been expressed in a continuous distribution (stress susceptibility and stress tolerance indices). Only my study was the survival or death of plants as the judgment of heat tolerance, divided into two parts, expressed in qualitative characters. (3) My research is to cultivate

plants by hydroponic cultivation, different from other heat-tolerant studies on planting with soil. There are many interference factors in the soil, my study could deduct [1] many interference factors in the environment. (4) Indica G.E.D.Oldroyd, J.I.Schroeder; Genetic strategies variety,TCS17, has a 100%-explaintion heat-tolerance gene for regulation and signaling. This heat-tolerance
gene is likely to regulate other heat-tolerance genes and [2] gene islikelyto regulate otherheat-tolerance genes and initiate the expression of all heat-tolerance traits of mitigating damage for growth, yield, grain quality,

and also the detection of the state of gradients (3) spikelet sterility, root length and shoot length under heat stress in rice. It is urgent to directly clone the heattolerance gene with a 100% explaintion. On the breeding ratio and results are population. Genetics, 148, 479-494 (1998).

[4] C.S.Huang: Development of Tainung No. 6 of heat-tolerant strains, the ideal variety can be crossed with indica variety, TCS17, and the RILs closely linked with C61009 marker can be selected for breeding.

CONCLUSIONS

In response to climate change due to global warming, there is an urgent need to find high explaination heat-tolerant genes in the world. My study will explain the 100% phenotypic variation of heat
telerones in indice veriety TCS17, which is expected [7] tolerance in indica variety, TCS17, which is expected to be provided to global research and fine map of the highly heat-tolerance gene, to bring the fastest breeging strategy of high temperature tolerant rice in the future.

ACKNOWLEDGEMENTS

IthankEditors andReviewers ofPlant Production Science for your patience and effort, Dr. Jenq-Horng Lin and Department of Life Science, National Chung [9] Hsing University for providing labs and glasshouse, Dr. Bo-Jein Kuo and the Laboratory of Biometry, Department of Agronomy, National Chung Hsing University for providing statistical analysis, Dr. Sen-Pen Ku and Department of BioAgricultural Sciences, National Chiayi University for providing information and
resource of rice genetic markers in Taiwan'. Crop, friendly help, Dr. Yong-Pei Wu and Chiayi Agricultural Research Institute forsupporting materials, labs, and fields, Dr. Yann-Rong Lin and the Laboratory of Genetics, Department of Agronomy, National Taiwan University for providing genetic analysis, labs, and friendly help, and Mr. Woei-Shyuan Jwo and the Agricultural Research Institute for offering materials and experience.

Original Research Article REFERENCES

- **REFERENCES
[1] J.Bailey-Serres, J.E.Parker, E.A.Ainsworth,** J.Bailey-Serres, J.E.Parker, E.A.Ainsworth,
G.E.D.Oldroyd, J.I.Schroeder; Genetic strategies for improving crop yields. Nature, **575**, 109-118 **(2019)**.
- **[2]** D.S.Falconer, T.F.C.Mackay; Introduction to Quantitative Genetics. Fourth Edition, Longmans Green, Harlow, Essex, UK, **(1996)**.
- **[3]** Y.Harushima, *et al*.; A high-density rice genetic linkage map with 2275 markers using a single F₂
- **[4]** C.S.Huang; Development of Tainung No. 67 rice. J.Agri.Res.China, **28**, 57-66 **(1979)**.
- **[5]** T.Ishiamaru, H.Hirabayashi, K.Sasaki, C.Ye, A.Kobayashi; Breeding efforts to mitigate damage by heat stress to spikelet sterility and grain quality. Plant Prod.Sci., **19**, 12-21 **(2016)**.
- **[6]** K.S.V.Jagadish, J.E.Cairns, A.Kumar, I.M.Somayanda, P.Q.Craufurd; Does susceptibility to heat stress confound screening for drought tolerance in rice? Funct.Plant Biol., **38(4)**, 261-269 **(2011)**.
- **[7]** N.L.Kilasi, et al.; Heat stress tolerance in rice (Oryza sativa L.): Identification of Quantitative Trait Loci and Candidate Genes for Seedling Growth Under Heat Stress. Frontiers in Plant Science, **9**, 1-11 **(2018)**.
- **[8]** C.L.Lao; The physiological response and protein expression profile of different rice (*Oryza sativa* L.) cultivars under high temperature stress. Master thesis. Department of Agronomy, National Taiwan University, **(2004)**.
- **[9]** H.X.Lin, et al.; Identification of QTL for salt tolerance in rice via molecular markers. Chin.J. Rice Sci., **12**, 72-78 **(1998)**.
- **[10]** T.F.Lin;The rice breeding forhigh yield with special reference to Taichung Sen 17. Bulletin of TDARES, **08**, 29-40 **(1984)**. reference to Taichung Sen 17. Bulletin of TDARES,
 08, 29-40 (**1984**).

[11] Y.R.Lin, et al.; Construction of the website 'the
- **08**, 29-40 (**1984**).
Y.R.Lin, et al.; Construction of the website 'the
resource of rice genetic markers in Taiwan'. Crop, Environment & Bioinformatics, **5**, 1-21 **(2008)**.
- **[12]** S.R.McCouch, et al.; Development and mapping of 2240 new SSR markers for rice (*Oryza sativa* L.). DNA Res., **9**, 199-207 **(2002)**.
- regions associated with spikelet fertility in response to a high temperature in rice (Oryza sativa L.). Plant
Cell Rep., 39(1), 149-162 (2020).
EXPLORATORY ENVIRONMENTAL SCIENCE RESEARCH [13] P.Nubankoh, et al.; QTL-seq reveals genomic P.Nubankoh, et al.; QTL-seq reveals genomic
regions associated with spikelet fertility in response
to a high temperature in rice (Oryza sativa L.). Plant Cell Rep., **39(1)**, 149-162 **(2020)**.

- [14] M.Ohta, et al.; Introduction of a $\text{Na}^+\text{/H}^+$ antiporter [21] gene from *Atriplex gmelini* confers salt tolerance to rice. FEBS Letters, **532**, 279-282 **(2002)**.
- **[15]** P.S.Shanmugavadivel, et al.; High resolution mapping of QTLs for heat tolerance in rice using a 5K SNP array. Rice (N Y), **10**, 28 **(2017)**.
- **[16]** Y.J.Shen, et al.; Development of genome-wide DNA polymorphism database for map-based cloning of rice genes. Plant Physiol., **135**, 1198- 1205 **(2004)**.
- **[17]** S.Temnykh, et al.; Computational and experimental analysis of microsatellites in rice (*Oryza sativa* L.): Frequency, length variation, transposon associations, and genetic marker potential. Genome Res., **11**, 1441-1452 **(2001)**.
- **[18]** D.Verma, S.L.Singla-Pareek, D.Rajagopal, M.K.Reddy, S.Sopory; Functional validation of a novel isoform of Na⁺/H⁺ antiporter from scente *Pennisetum glaucum* for enhancing salinity tolerance in rice. J.Biosci., **32**, 621-628 **(2007)**.
- **[19]** P.E.Verslues, M.Agawal, S.Katiyar-Agarwal, J.Zhu, J.-K.Zhu; Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J., **45**, 523-539 **(2006)**.
- **[20]** Y.P.Wu, P.Y.Ko, T.H.Tseng, C.S.Wang; Screening for scent and grain quality in rice mutants. J.Taiwan Agric.Res., **56**, 121-133 **(2007)**.
- **[21]** C.Ye, et al.; Mapping QTL for heat tolerance at flowering stage in rice using SNP markers. Plant Breeding, **131**, 33-41 **(2011)**.
- **[22]** C.Ye, et al.; Identifying and confirming quantitative trait loci associated with heat tolerance at flowering stage in different rice populations. BMC Genet., **16**, 41 **(2015)**.
- **[23]** C.Ye, et al.; Fine-mapping and validating qHTSF4.1 to increase spikelet fertility under heat stress at flowering in rice.Theor.Appl.Genet., **128(8)**, 1507- 17 **(2015)**.
- **[24]** C.C.Yen; Mutagenetic breeding and linkage-marker analyses of salt-tolerant rice. PhD thesis,
Department of Life Sciences, National Chung Hsing University, Taiwan, **(2011)**.
- **[25]** C.C.Yen, J.H.Lin; Screening, inheritance and linkage marker analyses of salt tolerance in mutated scented japonica rice (*Oryza sativa* L.). Plant Prod.Sci., **14(3)**, 260-269 **(2011)**.
- **[26]** L.Zhao, et al.; Mapping quantitative trait loci for heat tolerance at anthesis in rice using chromosomal segment substitution lines. Breed.Sci., 66(3), 358-366 **(2016)**.
- **[27]** C.L.Zhu, et al.; Mapping QTL for heat-tolerance at grain filling stage in rice.Chin.J.Rice Sci., **12(1)**, 33-38 **(2005)**.